1
|
Zhang T, Li J, Lu J, Li J, Zhang H, Miao Y, Liu X, He Y, Yang L, Fan H. Enhanced tumor-targeting ability of transferrin-functionalized magnetic nanoparticles by in vivo AMF stimulation. Biomaterials 2025; 315:122925. [PMID: 39489018 DOI: 10.1016/j.biomaterials.2024.122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The protein corona formed on the surface of ligand-functionalized nanoparticles has been associated with the loss of targeting capability of the nanoparticles in vivo. Here, we developed a remote magnetothermal stimulation approach to regulate the in vivo active-targeting capability of transferrin (Tf)-functionalized magnetic nanoparticles (SPIO-Tf). This technique harnesses the heat dissipation by the magnetic nanoparticles in response to alternating magnetic fields to re-expose buried Tf on the nanoparticle surface, thereby restoring its binding function. SPIO-Tf with different grafting densities were prepared and in vitro experiments reveal that AMF stimulation of SPIO-Tf significantly improved its targeting ability to A549 cells in serum-rich environments. In vivo experiments also exhibit a 2.68-fold greater accumulation of magnetothermal-stimulated SPIO-Tf in solid tumors. Moreover, our approach is applicable to various SPIO-Tf formulations with different PEG molecular weights, and antibodies-conjugated SPIO. Overall, this study establishes a versatile, safe and potent strategy to tackle the negative impact of protein corona on the targeting ability of ligand-decorated magnetic nanoparticles in vivo, with promising implications for enhancing the effectiveness of diagnostic and therapeutic interventions across a range of diseases.
Collapse
Affiliation(s)
- Tingbin Zhang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jia Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Junjie Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jianwei Li
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yuqing Miao
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China; Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| | - Lei Yang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Yaghmazadeh O. Pulsed High-Power Radio Frequency Energy Can Cause Non-Thermal Harmful Effects on the BRAIN. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:50-53. [PMID: 38445243 PMCID: PMC10914144 DOI: 10.1109/ojemb.2024.3355301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
High-power microwave applications are growing for both military and civil purposes, yet they can induce brain-related risks and raise important public health concerns. High-power sub-millisecond radio frequency energy pulses have been demonstrated to be able to induce neurological and neuropathological changes in the brain while being compliant with current regulatory guidelines' limits, highlighting the necessity of revising them.
Collapse
Affiliation(s)
- Omid Yaghmazadeh
- Neuroscience InstituteSchool of MedicineNew York UniversityNew YorkNY10016USA
| |
Collapse
|
3
|
Yaghmazadeh O. Pulsed high-power radio frequency energy can cause non-thermal harmful effects on the brain. ARXIV 2023:arXiv:2309.03479v1. [PMID: 37731658 PMCID: PMC10508825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
High-power microwave applications are growing for both military and civil purposes, yet they can induce brain-related risks and raise important public health concerns. High-power sub-millisecond radio frequency energy pulses have been demonstrated to be able to induce neurological and neuropathological changes in the brain while being compliant with current regulatory guidelines' limits, highlighting the necessity of revising them.
Collapse
Affiliation(s)
- Omid Yaghmazadeh
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
4
|
Yin Y, Xu X, Li D, Yao B, Wang H, Zhao L, Wang H, Dong J, Zhang J, Peng R. Role of Cx43 in iPSC-CM Damage Induced by Microwave Radiation. Int J Mol Sci 2023; 24:12533. [PMID: 37628714 PMCID: PMC10454302 DOI: 10.3390/ijms241612533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The heart is one of the major organs affected by microwave radiation, and these effects have been extensively studied. Previous studies have shown that microwave-radiation-induced heart injury might be related to the abnormal expression and distribution of Cx43. In order to make the research model closer to humans, we used iPSC-CMs as the cell injury model to investigate the biological effect and mechanism of iPSC-CM injury after microwave radiation. To model the damage, iPSC-CMs were separated into four groups and exposed to single or composite S-band (2.856 GHz) and X-band (9.375 GHz) microwave radiation sources with an average power density of 30 mW/cm2. After that, FCM was used to detect cell activity, and ELISA was used to detect the contents of myocardial enzymes and injury markers in the culture medium, and it was discovered that cell activity decreased and the contents increased after radiation. TEM and SEM showed that the ultrastructure of the cell membrane, mitochondria, and ID was damaged. Mitochondrial function was aberrant, and glycolytic capacity decreased after exposure. The electrical conduction function of iPSC-CM was abnormal; the conduction velocity was decreased, and the pulsation amplitude was reduced. Wb, qRT-PCR, and IF detections showed that the expression of Cx43 was decreased and the distribution of Cx43 at the gap junction was disordered. Single or composite exposure to S- and X-band microwave radiation caused damage to the structure and function of iPSC-CMs, primarily affecting the cell membrane, mitochondria, and ID. The composite exposure group was more severely harmed than the single exposure group. These abnormalities in structure and function were related to the decreased expression and disordered distribution of Cx43.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|