1
|
Zhao J, Guo Y, Zhang Z, Zhang X, Ji Q, Zhang H, Song Z, Liu D, Zeng J, Chuang C, Zhang E, Wang Y, Hu G, Mushtaq MA, Raza W, Cai X, Ciucci F. Out-of-plane coordination of iridium single atoms with organic molecules and cobalt-iron hydroxides to boost oxygen evolution reaction. NATURE NANOTECHNOLOGY 2025; 20:57-66. [PMID: 39433919 PMCID: PMC11750697 DOI: 10.1038/s41565-024-01807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir1/(Co,Fe)-OH/MI). This Ir1/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm-2 and 257 mV at 600 mA cm-2 as well as an ultra-small Tafel slope of 24 mV dec-1. Furthermore, Ir1/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.
Collapse
Affiliation(s)
- Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yue Guo
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhiqi Zhang
- Key Laboratory of Energy Thermal Conversion and Control (Ministry of Education), School of Energy and Environment, Southeast University, Nanjing, China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, China
| | - Qianqian Ji
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hua Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhaoqi Song
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chenghao Chuang
- Department of Physics, Tamkang University, New Taipei City, Taiwan
| | - Erhuan Zhang
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guangzhi Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | | | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Francesco Ciucci
- University of Bayreuth, Chair of Electrode Design for Electrochemical Energy Systems, Bayreuth, Germany.
- University of Bayreuth, Bavarian Center for Battery Technology (BayBatt), Bayreuth, Germany.
| |
Collapse
|
2
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
3
|
Liang Z, Shen D, Wei Y, Sun F, Xie Y, Wang L, Fu H. Modulating the Electronic Structure of Cobalt-Vanadium Bimetal Catalysts for High-Stable Anion Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408634. [PMID: 39148167 DOI: 10.1002/adma.202408634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Di Shen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yao Wei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fanfei Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
4
|
Yang Y, Wang G, Liu C, Lin Y, Jiao C, Chen Q, Zhuo Z, Mao J, Liu Y. Asymmetrically Coordinated Calcium Single Atom for High-Performance Oxygen Reduction Reaction. Inorg Chem 2024; 63:13086-13092. [PMID: 38937860 DOI: 10.1021/acs.inorgchem.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
S-block single atoms represent an ideal catalyst for the oxygen reduction reaction (ORR) as they can suppress the Fenton reaction. However, the symmetry of the s/p orbitals tends to generate either an excessively strong or weak interaction with intermediates. Herein, Ca single atoms coordinated with -S, -OP, and three N atoms (Ca/NPS-HC) were fabricated to modulate the adsorption of intermediates and promote the efficiency of s-block ORR catalysts. The experimental results from ORR demonstrated that the Ca/NPS-HC catalyst exhibited outstanding catalytic capability with a half-wave potential of 0.89 V, a kinetic current density of 56.6 mA cm-2 at 0.85 V, and a Tafel slope of 42 mV dec-1, outperforming commercial Pt/C. The detailed mechanistic studies revealed that the asymmetric coordination of Ca single atoms led to the symmetry-breaking of electron distribution in Ca single atoms, attenuating the s-p hybridization from the intermediate adsorption process, and thereby minimizing the energy barrier of the whole ORR.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changwei Liu
- Chery New Energy Automobile Co., Ltd, Wuhu 241002, China
| | - Yutao Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chi Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhiwen Zhuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Wang G, Ren R, Feng X, Wang Y, Meng J, Jia J. First-principle calculations study of the ORR/OER electrocatalytic activity of ruthenium polyphthalocyanine axially modified with aliphatic thiol groups. Phys Chem Chem Phys 2024; 26:16207-16217. [PMID: 38804323 DOI: 10.1039/d4cp00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activity of ruthenium polyphthalocyanine axially modified with different aliphatic thiol groups, RuPPc-SR (SR = -SCH3, -SC2H5, -SC3H7, -SC4H9, -SC5H11, and -SC6H13), in an acidic medium were simulated using DFT. All -SR groups can effectively enhance the ORR and OER catalytic activities of RuPPc. The ORR and OER overpotentials of RuPPc-SC4H9 are 0.237 V and 0.436 V, respectively, which are far lower than those of RuPPc (0.960 V and 0.903 V). For RuPPc-SC4H9, the four C and S atoms of the -SC4H9 chain and Ru atom are coplanar, and thus, conjugate effects and inductive effects exist between the -SC4H9 chain and Ru atom. This makes the Ru atom exhibit the least positive Bader charge and smallest spin density, and the anti-bonding orbitals of dxz, dyz, and dz2 of the Ru atom shift below the Fermi level (Ef). This makes the adsorption strength of RuPPc-SC4H9 toward ORR and OER intermediates the weakest, which accelerates the reaction process, thus resulting in better ORR and OER catalytic activity. Therefore, the introduction of the aliphatic thiol groups might effectively improve the OER/ORR catalytic activity of RuPPc.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
- Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
| | - Rongrong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Xiaoqin Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yuxin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Jie Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|
6
|
Ding S, Zheng B, Wang X, Zhou Y, Pan Z, Chen Y, Liu G, Lang L. Intercalated and Surface-Adsorbed Phosphate Anions in NiFe Layered Double-Hydroxide Catalysts Synergistically Enhancing Oxygen Evolution Reaction Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10384-10392. [PMID: 38698714 DOI: 10.1021/acs.langmuir.4c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The oxygen evolution reaction (OER), a crucial semireaction in water electrolysis and rechargeable metal-air batteries, is vital for carbon neutrality. Hindered by a slow proton-coupled electron transfer, an efficient catalyst activating the formation of an O-H bond is essential. Here, we proposed a straightforward one-step hydrothermal procedure for fabricating PO43--modified NiFe layered double-hydroxide (NiFe LDH) catalysts and investigated the role of PO43- anions in enhancing OER. Phosphate amounts can efficiently regulate LDH morphology, crystallinity, composition, and electronic configuration. The optimized sample showed a low overpotential of 267 mV at 10 mA cm-2. Density functional theory calculations revealed that intercalated and surface-adsorbed PO43- anions in NiFe LDH reduced the Gibbs free energy in the rate-determining step of *OOH formation, balancing oxygen-containing intermediate adsorption/dissociation and promoting the OER. Intercalated phosphate ions accelerated precatalyst dehydrogenation kinetics, leading to a rapid reconstruction into active NiFe oxyhydroxide species. Surface-adsorbed PO43- interacted favorably with adsorbed *OOH on the active Ni sites, stabilizing *OOH. Overall, the synergistic effects of intercalated and surface-adsorbed PO43- anions significantly contributed to enhanced OER activity. Achieving optimal catalytic activity requires a delicate equilibrium between thermodynamic and kinetic factors by meticulously regulating the quantity of introduced PO43- ions. This endeavor will facilitate a deeper comprehension of the influence of anions in electrocatalysis for OER.
Collapse
Affiliation(s)
- Shiqing Ding
- College of Traffic Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Bo Zheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yue Zhou
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhaorui Pan
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yan Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Leiming Lang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
7
|
Yang Y, Wang G, Zhang S, Jiao C, Wu X, Pan C, Mao J, Liu Y. Boron in the Second Coordination Sphere of Fe Single Atom Boosts the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16224-16231. [PMID: 38513153 DOI: 10.1021/acsami.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Metal single atoms coordinated with four nitrogen atoms (M1N4) are regarded as tremendously promising catalysts for the electrocatalytic oxygen reduction reaction (ORR). Nevertheless, the strong bond intensity between the metal center and the O atom in oxygen-containing intermediates significantly limits the ORR activity of M1N4. Herein, the catalytically active B atom is successfully introduced into the second coordination sphere of the Fe single atom (Fe1N4-B-C) to realize the alternative binding of B and O atoms and thus facilitate the ORR activity. Compared with the pristine Fe1N4 catalyst, the synthesized Fe1N4-B-C catalyst exhibits improved ORR catalytic capability with a half-wave potential (E1/2) of 0.80 V and a kinetic current density (JK) of 5.32 mA cm-2 in acid electrolyte. Moreover, in an alkaline electrolyte, the Fe1N4-B-C catalyst displays remarkable ORR activity with E1/2 of 0.87 V and JK of 8.94 mA cm-2 at 0.85 V, outperforming commercial Pt/C. Notably, the mechanistic study has revealed that the active center is the B atom in the second coordination shell of the Fe1N4-B-C catalyst, which avoids the direct bonding of Fe-O. The B center has a moderate binding force to the ORR intermediate, which flattens the ORR energy diagram and thereby improves the ORR performance. Therefore, this study offers a novel strategy for tailoring catalytic performance by tuning the active center of single-atom catalyst.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Shuangshuang Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chi Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiaoyan Wu
- Anhui RuiHy Power Technology Co., Ltd., Wuhu 241002, China
| | - Chenbing Pan
- Anhui RuiHy Power Technology Co., Ltd., Wuhu 241002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
8
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Wu Y, Yu Y, Shen W, Jiang Y, He R, Li M. Anion-induced electronic localization and polarized cobalt clusters for highly efficient water splitting. MATERIALS HORIZONS 2023; 10:5633-5642. [PMID: 37753534 DOI: 10.1039/d3mh01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
It is a promising pathway to use anions to regulate electronic structures, reasonably design and construct highly efficient catalysts for water splitting. Herein, a N-regulated Co cluster catalyst confined in carbon nanotubes, N-Co NCNTs, was constructed successfully. Nitrogen anions played a crucial role in optimizing the electronic structures of Co clusters and enhancing localization of electrons, resulting in polarized cobalt clusters. The N-induced electronic localization and the resulting polarized Co clusters are responsible for the improvement of catalytic activity. N-Co NCNTs exhibited ultra-low overpotentials of 178 mV and 92 mV for the OER and HER to achieve 10 mA cm-2 in an alkaline electrolyte, respectively. Its long-term catalytic durability is mainly attributed to the obstacle to the surface oxidation of Co clusters caused by N-regulation. N-Co NCNTs maintained a stable current density for 160 h at 10 mA cm-2. DFT computations confirmed the decisive role played by nitrogen anions in regulating the electronic structure. This work provides a pathway for understanding and designing highly efficient anion-regulated catalysts.
Collapse
Affiliation(s)
- Yucheng Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
10
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
11
|
Jin Q, Wang C, Guo Y, Xiao Y, Tan X, Chen J, He W, Li Y, Cui H, Wang C. Axial Oxygen Ligands Regulating Electronic and Geometric Structure of Zn-N-C Sites to Boost Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302152. [PMID: 37358311 PMCID: PMC10460851 DOI: 10.1002/advs.202302152] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Indexed: 06/27/2023]
Abstract
Zn-N-C possesses the intrinsic inertia for Fenton-like reaction and can retain robust durability in harsh circumstance, but it is often neglected in oxygen reduction reaction (ORR) because of its poor catalytic activity. Zn is of fully filled 3d10 4s2 configuration and is prone to evaporation, making it difficult to regulate the electronic and geometric structure of Zn center. Here, guided by theoretical calculations, five-fold coordinated single-atom Zn sites with four in-plane N ligands is constructed and one axial O ligand (Zn-N4 -O) by ionic liquid-assisted molten salt template method. Additional axial O not only triggers a geometry transformation from the planar structure of Zn-N4 to the non-planar structure of Zn-N4 -O, but also induces the electron transfer from Zn center to neighboring atoms and lower the d-band center of Zn atom, which weakens the adsorption strength of *OH and decreases the energy barrier of rate determining step of ORR. Consequently, the Zn-N4 -O sites exhibit improved ORR activity and excellent methanol tolerance with long-term durability. The Zn-air battery assembled by Zn-N4 -O presents a maximum power density of 182 mW cm-2 and can operate continuously for over 160 h. This work provides new insights into the design of Zn-based single atom catalysts through axial coordination engineering.
Collapse
Affiliation(s)
- Qiuyan Jin
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Chenhui Wang
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Yingying Guo
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Yuhang Xiao
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaohong Tan
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Jianpo Chen
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Weidong He
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Yan Li
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Hao Cui
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| | - Chengxin Wang
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
12
|
Wang D, Le F, Lv J, Yang X, Chen X, Yao H, Jia W. Fe-Incorporated Nickel-Based Bimetallic Metal-Organic Frameworks for Enhanced Electrochemical Oxygen Evolution. Molecules 2023; 28:molecules28114366. [PMID: 37298841 DOI: 10.3390/molecules28114366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Developing cost-effective and high-efficiency catalysts for electrocatalytic oxygen evolution reaction (OER) is crucial for energy conversions. Herein, a series of bimetallic NiFe metal-organic frameworks (NiFe-BDC) were prepared by a simple solvothermal method for alkaline OER. The synergistic effect between Ni and Fe as well as the large specific surface area lead to a high exposure of Ni active sites during the OER. The optimized NiFe-BDC-0.5 exhibits superior OER performances with a small overpotential of 256 mV at a current density of 10 mA cm-2 and a low Tafel slope of 45.4 mV dec-1, which outperforms commercial RuO2 and most of the reported MOF-based catalysts reported in the literature. This work provides a new insight into the design of bimetallic MOFs in the applications of electrolysis.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Fuhe Le
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
- Xinjiang Uygur Autonomous Region Research Institute of Measurement & Testing, Urumqi 830011, China
| | - Jing Lv
- Quality and Safety Testing Center of Urumqi Agricultural Products, Urumqi 830000, China
| | - Xue Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Xianhao Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Haibin Yao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
13
|
Huang Y, Chen H, Zhang B. Constructing Molybdenum Phosphide@Cobalt Phosphide Heterostructure Nanoarrays on Nickel Foam as a Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Molecules 2023; 28:molecules28093647. [PMID: 37175057 PMCID: PMC10180104 DOI: 10.3390/molecules28093647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of multi-level heterostructure materials is an effective way to further the catalytic activity of catalysts. Here, we assembled self-supporting MoS2@Co precursor nanoarrays on the support of nickel foam by coupling the hydrothermal method and electrostatic adsorption method, followed by a low-temperature phosphating strategy to obtain Mo4P3@CoP/NF electrode materials. The construction of the Mo4P3@CoP heterojunction can lead to electron transfer from the Mo4P3 phase to the CoP phase at the phase interface region, thereby optimizing the charge structure of the active sites. Not only that, the introduction of Mo4P3 will make water molecules preferentially adsorb on its surface, which will help to reduce the water molecule decomposition energy barrier of the Mo4P3@CoP heterojunction. Subsequently, H* overflowed to the surface of CoP to generate H2 molecules, which finally showed a lower water molecule decomposition energy barrier and better intermediate adsorption energy. Based on this, the material shows excellent HER/OER dual-functional catalytic performance under alkaline conditions. It only needs 72 mV and 238 mV to reach 10 mA/cm2 for HER and OER, respectively. Meanwhile, in a two-electrode system, only 1.54 V is needed to reach 10 mA/cm2, which is even better than the commercial RuO2/NF||Pt/C/NF electrode pair. In addition, the unique self-supporting structure design ensures unimpeded electron transmission between the loaded nanoarray and the conductive substrate. The loose porous surface design is not only conducive to the full exposure of more catalytic sites on the surface but also facilitates the smooth escape of gas after production so as to improve the utilization rate of active sites. This work has important guiding significance for the design and development of high-performance bifunctional electrolytic water catalysts.
Collapse
Affiliation(s)
- Yingchun Huang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hongming Chen
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Busheng Zhang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|