1
|
Zheng Q, Xu Z, Li N, Wang Y, Zhang T, Jing J. Age-related hearing loss in older adults: etiology and rehabilitation strategies. Front Neurosci 2024; 18:1428564. [PMID: 39411148 PMCID: PMC11473498 DOI: 10.3389/fnins.2024.1428564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related hearing loss (ARHL) is a prevalent sensory organ disorder among elderly individuals that significantly impacts their cognitive function, psychological well-being, and ability to perform activities of daily living. As the population ages, the number of ARHL patients is increasing. However, the Audiological rehabilitation (AR) status of patients is not promising. In recent years, there has been an increasing focus on the health and rehabilitation of elderly individuals, and significant progress has been made in researching various age-related disorders. However, a unified definition of ARHL in terms of etiology and rehabilitation treatment is still lacking. This study aims to provide a reference for future research on ARHL and the development of AR strategies by reviewing the classification, etiology, and rehabilitation of ARHL.
Collapse
Affiliation(s)
- Qinzhi Zheng
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yueying Wang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ting Zhang
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Jiapeng Jing
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
2
|
Jeon E, Lee U, Yoon S, Hur S, Choi H, Han C. Frequency-Selective, Multi-Channel, Self-Powered Artificial Basilar Membrane Sensor with a Spiral Shape and 24 Critical Bands Inspired by the Human Cochlea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400955. [PMID: 38885422 PMCID: PMC11336941 DOI: 10.1002/advs.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Indexed: 06/20/2024]
Abstract
A spiral-artificial basilar membrane (S-ABM) sensor is reported that mimics the basilar membrane (BM) of the human cochlea and can detect sound by separating it into 24 sensing channels based on the frequency band. For this, an analytical function is proposed to design the width of the BM so that the frequency bands are linearly located along the length of the BM. To fabricate the S-ABM sensor, a spiral-shaped polyimide film is used as a vibrating membrane, with maximum displacement at locations corresponding to specific frequency bands of sound, and attach piezoelectric sensor modules made of poly(vinylidene fluoride-trifluoroethylene) film on top of the polyimide film to measure the vibration amplitude at each channel location. As the result, the S-ABM sensor implements a characteristic frequency band of 96-12,821 Hz and 24-independent critical bands. Using real-time signals from discriminate channels, it is demonstrated that the sensor can rapidly identify the operational noises from equipment processes as well as vehicle sounds from environmental noises on the road. The sensor can be used in a variety of applications, including speech recognition, dangerous situation recognition, hearing aids, and cochlear implants, and more.
Collapse
Affiliation(s)
- Eun‐Seok Jeon
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| | - Useung Lee
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| | - Seongho Yoon
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| | - Shin Hur
- Department of Bionic MachineryKorea Institute of Machinery and Materials (KIMM)156 Gajeongbuk‐ro, Yuseong‐guDaejeon304–343Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science and Technology (DGIST)333, Techno jungang‐daero, Hyeonpung‐MyeonDalseong‐GunDaegu711–873Republic of Korea
| | - Chang‐Soo Han
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| |
Collapse
|
3
|
Tang H, Yang Y, Liu Z, Li W, Zhang Y, Huang Y, Kang T, Yu Y, Li N, Tian Y, Liu X, Cheng Y, Yin Z, Jiang X, Chen X, Zang J. Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 2024; 630:84-90. [PMID: 38840015 DOI: 10.1038/s41586-024-07334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/19/2024] [Indexed: 06/07/2024]
Abstract
Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.
Collapse
Affiliation(s)
- Hanchuan Tang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yueying Yang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yipeng Zhang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhou Huang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Kang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tian
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xurui Liu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Cheng
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Yin
- Flexible Electronics Research Center, The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Jianfeng Zang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Cheng X, Shen Z, Zhang Y. Bioinspired 3D flexible devices and functional systems. Natl Sci Rev 2024; 11:nwad314. [PMID: 38312384 PMCID: PMC10833470 DOI: 10.1093/nsr/nwad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024] Open
Abstract
Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
6
|
Xiao X, Chen J, Wang K, Yu Y, Wei K. Multimaterial Additively Manufactured Metamaterials Functionalized with Customizable Thermal Expansion in Multiple Directions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47434-47446. [PMID: 37782300 DOI: 10.1021/acsami.3c08134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Metamaterials functionalized with customizable multidirectional coefficient of thermal expansion (CTE) are urgently needed for advanced shape control or dimensional stability under temperature variations. The currently reported metamaterials still lack the development of diverse base material systems and exploration of the multimaterial fabrication process. Especially, the reported range of customizable CTEs for metamaterials in multiple directions is limited within [-68.1, 56.4] ppm/°C. Here, this work explicitly proposes a strategy for closely linking base materials, additive manufacturing (AM) process, architecture, and CTE tunability, in order to provide a general guideline for the design or customization of such metamaterials. In detail, first, we systematically identify the key process parameters and related performance for additive manufacturing of polymers and propose various multimaterial systems such as polypropylene-polycarbonate (PP-PC). Then, six types of metamaterials have been fabricated with high quality by the established multimaterial additive manufacturing. By measuring the effective CTEs in multiple directions, the CTE tunability of metamaterials, including large positive values (+523.36 ppm/°C) and large negative values (-230.61 ppm/°C), far beyond the literature-reported CTE range, has been experimentally verified. Further, we have developed a bidirectional requirement-solution strategy here that acts as a bridge between design and fabrication. This work opens advanced avenues for metamaterials with multidirectionally customizable and extensive CTE tunability for a variety of engineering applications such as actuators, thermal stress relief, and improved structural stability.
Collapse
Affiliation(s)
- Xiaoyujie Xiao
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Jiaxin Chen
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Kaiyu Wang
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yinzheng Yu
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Kai Wei
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, P. R. China
| |
Collapse
|