1
|
Hu Y, Hou Z, Liu Z, Wang X, Zhong J, Li J, Guo X, Ruan C, Sang H, Zhu B. Oyster mantle-derived exosomes alleviate osteoporosis by regulating bone homeostasis. Biomaterials 2024; 311:122648. [PMID: 38833761 DOI: 10.1016/j.biomaterials.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Osteoporosis is a major public health problem with an urgent need for safe and effective therapeutic interventions. The process of shell formation in oysters is similar to that of bone formation in mammals, and oyster extracts have been proven to exert osteoprotective effects. Oyster mantle is the most crucial organ regulating shell formation, in which exosomes play an important role. However, the effects of oyster mantle-derived exosomes (OMEs) on mammalian osteoporosis and the underlying mechanisms remain unknown. The OMEs investigated herein was found to carry abundant osteogenic cargos. They could also survive hostile gastrointestinal conditions and accumulate in the bones following oral administration. Moreover, they promoted osteoblastic differentiation and inhibited osteoclastic differentiation simultaneously. Further mechanistic examination revealed that OMEs likely promoted osteogenic activity by activating PI3K/Akt/β-catenin pathway in osteoblasts and blunted osteoclastic activity by inhibiting NF-κB pathway in osteoclasts. These favorable pro-osteogenic effects of OMEs were also corroborated in a rat femur defect model. Importantly, oral administration of OMEs effectively attenuated bone loss and improved the bone microstructure in ovariectomy-induced osteoporotic mice, and demonstrating excellent biosafety. The mechanistic insights from our data support that OMEs possess promising therapeutic potential against osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao Wang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
2
|
Zhang B, Pei Z, Tian A, He W, Sun C, Hao T, Ariben J, Li S, Wu L, Yang X, Zhao Z, Wu L, Meng C, Xue F, Wang X, Ma X, Zheng F. Multi-omics Analysis to Identify Key Immune Genes for Osteoporosis based on Machine Learning and Single-cell Analysis. Orthop Surg 2024; 16:2803-2820. [PMID: 39238187 PMCID: PMC11541141 DOI: 10.1111/os.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Osteoporosis is a severe bone disease with a complex pathogenesis involving various immune processes. With the in-depth understanding of bone immune mechanisms, discovering new therapeutic targets is crucial for the prevention and treatment of osteoporosis. This study aims to explore novel bone immune markers related to osteoporosis based on single-cell and transcriptome data, utilizing bioinformatics and machine learning methods, in order to provide novel strategies for the diagnosis and treatment of the disease. METHODS Single cell and transcriptome data sets were acquired from Gene Expression Omnibus (GEO). The data was then subjected to cell communication analysis, pseudotime analysis, and high dimensional WGCNA (hdWGCNA) analysis to identify key immune cell subpopulations and module genes. Subsequently, ConsensusClusterPlus analysis was performed on the key module genes to identify different diseased subgroups in the osteoporosis (OP) training set samples. The immune characteristics between subgroups were evaluated using Cibersort, EPIC, and MCP counter algorithms. OP's hub genes were screened using 10 machine learning algorithms and 113 algorithm combinations. The relationship between hub genes and immunity and pathways was established by evaluating the immune and pathway scores of the training set samples through the ESTIMATE, MCP-counter, and ssGSEA algorithms. Real-time fluorescence quantitative PCR (RT-qPCR) testing was conducted on serum samples collected from osteoporosis patients and healthy adults. RESULTS In OP samples, the proportions of bone marrow-derived mesenchymal stem cells (BM-MSCs) and neutrophils increased significantly by 6.73% (from 24.01% to 30.74%) and 6.36% (from 26.82% to 33.18%), respectively. We found 16 intersection genes and four hub genes (DND1, HIRA, SH3GLB2, and F7). RT-qPCR results showed reduced expression levels of DND1, HIRA, and SH3GLB2 in clinical blood samples of OP patients. Moreover, the four hub genes showed positive correlations with neutrophils (0.65-0.90), immature B cells (0.76-0.92), and endothelial cells (0.79-0.87), while showing negative correlations with myeloid-derived suppressor cells (negative 0.54-0.73), T follicular helper cells (negative 0.71-0.86), and natural killer T cells (negative 0.75-0.85). CONCLUSION Neutrophils play a crucial role in the occurrence and development of osteoporosis. The four hub genes potentially inhibit metabolic activities and trigger inflammation by interacting with other immune cells, thereby significantly contributing to the onset and diagnosis of OP.
Collapse
Affiliation(s)
- Baoxin Zhang
- Suzhou Medical College of Soochow UniversitySuzhouPeople's Republic of China
- Department of Hepatic HydatidosisQinghai Provincial People's HospitalXiningPeople's Republic of China
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
- Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Zhiwei Pei
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Aixian Tian
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Wanxiong He
- Sanya People's HospitalSanyaPeople's Republic of China
| | - Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | | | - Siqin Li
- Bayannur City HospitalBayannurPeople's Republic of China
| | - Lina Wu
- Aier Eye HospitalTianjin UniversityTianjinPeople's Republic of China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Lina Wu
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Fei Xue
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople's Republic of China
| | - Xing Wang
- Bayannur City HospitalBayannurPeople's Republic of China
| | - Xinlong Ma
- Orthopedic Research Institute, Tianjin HospitalTianjinPeople's Republic of China
| | - Feng Zheng
- Suzhou Medical College of Soochow UniversitySuzhouPeople's Republic of China
- Department of Hepatic HydatidosisQinghai Provincial People's HospitalXiningPeople's Republic of China
| |
Collapse
|
3
|
Xiao D, Huang S, Tang Z, Liu M, Di D, Ma Y, Li Y, Duan JA, Lu C, Zhao M. Mijiao formula regulates NAT10-mediated Runx2 mRNA ac4C modification to promote bone marrow mesenchymal stem cell osteogenic differentiation and improve osteoporosis in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118191. [PMID: 38621468 DOI: 10.1016/j.jep.2024.118191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dong Xiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Sirui Huang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Zhuqian Tang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Mengqiu Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Di Di
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Yingrun Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Yunjuan Li
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Cai Lu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Ming Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
4
|
Li F, Zhao X, Zhang Y, Zhuang Q, Wang S, Fang X, Xu T, Li X, Chen G. Exosomal circFAM63Bsuppresses bone regeneration of postmenopausal osteoporosis via regulating miR-578/HMGA2 axis. J Orthop Res 2024; 42:1244-1253. [PMID: 38151824 DOI: 10.1002/jor.25776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Postmenopausal osteoporosis (PMOP) affects hundreds of millions of elderly women worldwide. The imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the key factor in the progression of PMOP. Recently, exosomal circular RNAs have been considered as critical regulators in physiological and pathological progress. However, their roles in PMOP still require further exploration. Herein, we identified that the expression of exosomal circFAM63B significantly increased in PMOP patients and is closely related to bone density. We further demonstrated that circFAM63B inhibits osteogenic differentiation of bone marrow stromal cells and bone formation in ovariectomy mice by using a combination of in vitro and in vivo experiment strategies. Mechanistically, circFAM63B promotes HMGA2 expression by inhibiting miR-578, thereby suppressing bone repair. Our study proved that exosomal circFAM63B suppresses the bone regeneration of PMOP by regulating the miR-578/HMGA2 axis, which may provide new insights into the pathogenesis and development of PMOP. Knocking down exosomal circFAM63B could be regarded as a new strategy for the treatment of PMOP.
Collapse
Affiliation(s)
- Feng Li
- Department of Spine Surgery, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Xiaodong Zhao
- Department of Spine Surgery, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Yang Zhang
- Department of Spine Surgery, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Qingshan Zhuang
- Department of Spine Surgery, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Song Wang
- Department of Spine Surgery, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Xichi Fang
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopedic Surgery, Division of Hand& Foot and Microvascular Surgery, the First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Tao Xu
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopedic Surgery, Division of Hand& Foot and Microvascular Surgery, the First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Xiaopeng Li
- Department of Spine Surgery, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Gaoyang Chen
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopedic Surgery, Division of Hand& Foot and Microvascular Surgery, the First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
5
|
Wei F, Lin K, Ruan B, Wang C, Yang L, Wang H, Wang Y. Epigallocatechin gallate protects MC3T3-E1 cells from cadmium-induced apoptosis and dysfunction via modulating PI3K/AKT/mTOR and Nrf2/HO-1 pathways. PeerJ 2024; 12:e17488. [PMID: 38827303 PMCID: PMC11141548 DOI: 10.7717/peerj.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.
Collapse
Affiliation(s)
- Fanhao Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Kai Lin
- Nanjing University Medical School, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, Nanjing, China
| | | | - Lixun Yang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hongwei Wang
- Nanjing University Medical School, Nanjing, China
| | - Yongxiang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Zhou S, Xiao C, Fan L, Yang J, Ge R, Cai M, Yuan K, Li C, Crawford RW, Xiao Y, Yu P, Deng C, Ning C, Zhou L, Wang Y. Injectable ultrasound-powered bone-adhesive nanocomposite hydrogel for electrically accelerated irregular bone defect healing. J Nanobiotechnology 2024; 22:54. [PMID: 38326903 PMCID: PMC10851493 DOI: 10.1186/s12951-024-02320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.
Collapse
Affiliation(s)
- Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruihan Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ross William Crawford
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, 4059, Australia
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, 4111, Australia
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
7
|
Zhao J, Liang G, Yang J, Huang H, Dou Y, Gu Z, Liu J, Zeng L, Yang W. Liuwei Dihuang Pills Enhance Osteogenic Differentiation in MC3T3-E1 Cells through the Activation of the Wnt/β-Catenin Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:99. [PMID: 38256932 PMCID: PMC10819701 DOI: 10.3390/ph17010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The therapeutic efficacy and molecular mechanisms of traditional Chinese medicines (TCMs), such as Liuwei Dihuang pills (LWDH pills), in treating osteoporosis (OP) remain an area of active research and interest in modern medicine. This study investigated the mechanistic underpinnings of LWDH pills in the treatment of OP based on network pharmacology, bioinformatics, and in vitro experiments. METHODS The active ingredients and targets of LWDH pills were retrieved through the TCMSP database. OP-related targets were identified using the CTD, GeneCards, and DisGeNET databases. The STRING platform was employed to construct a protein-protein interaction (PPI) network, and core targets for LWDH pills in treating OP were identified. The GO functional and KEGG pathway enrichment analyses for potential targets were performed using the R package "clusterProfiler". A "drug-target" network diagram was created using Cytoscape 3.7.1 software. The viability of MC3T3-E1 cells was evaluated using the CCK-8 method after treatment with various concentrations (1.25%, 2.5%, 5%, and 10%) of LWDH pill-medicated serum for 24, 48, and 72 h. Following a 48 h treatment of MC3T3-E1 cells with LWDH pill-medicated serum, the protein levels of collagen Ⅰ, RUNX2, Wnt3, and β-catenin were quantified using the Western blot analysis, and the activity of alkaline phosphatase (ALP) was measured. RESULTS A total of 197 putative targets for LWDH pills for OP treatment were pinpointed, from which 20 core targets were singled out, including TP53, JUN, TNF, CTNNB1 (β-catenin), and GSK3B. The putative targets were predominantly involved in signaling pathways such as the Wnt signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. The intervention with LWDH pill-medicated serum for 24, 48, and 72 h did not result in any notable alterations in the cell viability of MC3T3-E1 cells relative to the control group (all p > 0.05). Significant upregulation in protein levels of collagen Ⅰ, RUNX2, Wnt3, and β-catenin in MC3T3-E1 cells was observed in response to the treatment with 2.5%, 5%, and 10% of LWDH pill-medicated serum in comparison to that with the 10% rabbit serum group (all p < 0.05). Furthermore, the intervention with LWDH pill-medicated serum resulted in the formation of red calcified nodules in MC3T3-E1 cells, as indicated by ARS staining. CONCLUSIONS LWDH pills may upregulate the Wnt/β-catenin signaling pathway to elevate the expression of osteogenic differentiation proteins, including collagen Ⅰ and RUNX2, and to increase the ALP activity in MC3T3-E1 cells for the treatment of OP.
Collapse
Affiliation(s)
- Jinlong Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (G.L.); (Y.D.); (Z.G.)
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China;
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China;
| | - Guihong Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (G.L.); (Y.D.); (Z.G.)
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China;
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China;
| | - Junzheng Yang
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Hetao Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China;
| | - Yaoxing Dou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (G.L.); (Y.D.); (Z.G.)
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China;
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China;
| | - Zhuoxu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (G.L.); (Y.D.); (Z.G.)
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China;
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, China
| | - Lingfeng Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (G.L.); (Y.D.); (Z.G.)
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China;
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China;
| | - Weiyi Yang
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China;
| |
Collapse
|