1
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
2
|
Cui X, Fang F, Chen H, Cao C, Xiao Y, Tian S, Zhang J, Li S, Lee CS. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. MATERIALS HORIZONS 2024. [PMID: 39560293 DOI: 10.1039/d4mh00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Among type I photosensitizers, stable organic radicals are superior candidate molecules for hypoxia-overcoming photodynamic therapy. However, their wide applications are limited by complicated preparation processes and poor stabilities. Herein, a nitroxide radical was simply synthesized by introducing a commercially available "TEMPO" moiety. The radical exhibits efficient type-I ROS generation and appreciable photo-cytotoxicity under hypoxia, which open up a new avenue for the exploration of a novel and efficient type-I photosensitizer.
Collapse
Affiliation(s)
- Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Yafang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China.
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
3
|
Wei Y, Wang J. X-ray/γ-ray/Ultrasound-Activated Persistent Luminescence Phosphors for Deep Tissue Bioimaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56519-56544. [PMID: 39401275 DOI: 10.1021/acsami.4c11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs in vivo, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.
Collapse
Affiliation(s)
- Yurong Wei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Bai Q, Wang M, Wang K, Liu J, Qu F, Lin H. CuPc-Fe@BSA nanocomposite: Intracellular acid-sensitive aggregation for enhanced sonodynamic and chemo-therapy. J Colloid Interface Sci 2024; 671:577-588. [PMID: 38820842 DOI: 10.1016/j.jcis.2024.05.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
Due to their rigid π-conjugated macrocyclic structure, organic sonosensitizers face significant aggregation in physiological conditions, hindering the production of reactive oxygen species (ROS). An acid-sensitive nanoassembly was developed to address this issue and enhance sonodynamic therapy (SDT) and emission. Initially, copper phthalocyanine (CuPc) was activated using a H2SO4-assisted hydrothermal method to introduce multiple functional groups (-COOH, -OH, and -SO3H), disrupting strong π-π stacking and promoting ROS generation and emission. Subsequently, negatively charged CuPc-SO4 was incorporated into bovine serum albumin (BSA) to form CuPc-Fe@BSA nanoparticles (10 nm) with Fe3+ ions serving as linkers. In acidic conditions, protonation of CuPc-SO4 and BSA weakened the interactions, leading to Fe3+ release and nanostructure dissociation. Protonated CuPc-SO4 tended to self-aggregate into nanorods. This acidity-sensitive aggregation is vital for achieving specific accumulation within the tumor microenvironment (TME), thereby enhancing retention and SDT efficacy. Prior to this, the nanocomposites demonstrated cycling stability under neutral conditions. Additionally, the released Fe ions exhibited mimicry of glutathione peroxidase and peroxidase activity for chemotherapy (CDT). The synergistic effect of SDT and CDT increased intracellular oxidative stress, causing mitochondrial injury and ferroptosis. Furthermore, the combined therapy induced immunogenic cell death (ICD), effectively activating anticancer immune responses and suppressing metastasis and recurrence.
Collapse
Affiliation(s)
- Qingchen Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miao Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China; Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin 150028, China.
| | - Jingwei Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
5
|
Tang X, Li Y, Zhu T, Lv L, Liu J. Low-dose X-ray stimulated NO-releasing nanocomposites for closed-loop dual-mode cancer therapy. Biomater Sci 2024; 12:4211-4225. [PMID: 38980700 DOI: 10.1039/d4bm00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
X-ray-excited photodynamic therapy (X-PDT) employs X-rays as an energy source, overcoming the light penetration limitations of traditional photodynamic therapy (PDT) but is constrained by high-energy radiation and the hypoxic tumor microenvironment. Low-dose X-ray-excited photodynamic therapy and reduction of mitochondrial oxygen consumption can serve as significant breakthroughs in overcoming these barriers. In this study, NaLuF4:Tb/Gd (15%/5%)@NaYF4 (ScNP) nanoparticles adsorbing the photosensitizer MC540 and loaded with α-(nitrate ester) acid (NEAA) were prepared as low X-ray dose triggered nano-scintillators. The final product obtained was NaLuF4:Tb/Gd (15%/5%)@NaYF4@mSiO2@MC540@NEAA (ScNP-MS@MC540@NEAA) nanocomposites, which exhibited intense green luminescence. X-PDT generates cytotoxic reactive oxygen species (ROS) with minimal ionizing radiation damage. Simultaneously, NEAA reacts with glutathione (GSH) to generate nitric oxide (NO) for gaseous treatment of the damaged mitochondrial respiratory chain to reduce oxygen consumption and alleviate hypoxia, enhancing the X-PDT efficacy and realizing a closed-loop treatment. The superoxide ions (˙O2-) can rapidly react with NO produced to form the highly cytotoxic reactive nitrogen species (RNS) peroxynitrite anion (ONOO-), which exhibits higher cytotoxicity compared to ROS. Furthermore, GSH scavenges toxic ROS and maintains the physiological function of tumor cells. It can induce cancer cell overoxidation and nitrosative stress. This work describes a low-dose X-ray-triggered X-PDT system with total radiation of 50 mGy, which involves GSH consumption, self-supplied NO, mitochondrial damage alleviation, and hypoxia relief to generate ROS and RNS, forming a closed-loop anti-hypoxia dual-mode system with synergistically enhanced anti-tumor effects, without significant biological side effects. It provides a promising platform for deep-seated tumor X-PDT with considerable application prospects.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Longhao Lv
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
6
|
Ren Q, Wang H, Li D, Dao A, Luo J, Wang D, Zhang P, Huang H. An Electron Donor-Acceptor Structured Rhenium(I) Complex Photo-Sensitizer Evokes Mutually Reinforcing "Closed-Loop" Ferroptosis and Immunotherapy. Adv Healthc Mater 2024; 13:e2304067. [PMID: 38597369 DOI: 10.1002/adhm.202304067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
The hypoxic microenvironment of solid tumors severely lowers the efficacy of oxygen-dependent photodynamic therapy (PDT). The development of hypoxia-tolerant photosensitizers for PDT is an urgent requirement. In this study, a novel rhenium complex (Re-TTPY) to develop a "closed-loop" therapy based on PDT-induced ferroptosis and immune therapy is reported. Due to its electron donor-acceptor (D-A) structure, Re-TTPY undergoes energy transfer and electron transfer processes under 550 nm light irradiation and displays hypoxia-tolerant type I/II combined PDT capability, which can generate 1O2, O2 -, and ·OH simultaneously. Further, the reactive oxygen species (ROSs) leads to the depletion of 1,4-dihydronicotinamide adenine dinucleotide (NADH), glutathione peroxidase 4 (GPX4), and glutathione (GSH). As a result, ferroptosis occurs in cells, simultaneously triggers immunogenic cell death (ICD), and promotes the maturation of dendritic cells (DCs) and infiltration of T cells. The release of interferon-γ (IFN-γ) by CD8+ T cells downregulates the expression of GPX4, further enhancing the occurrence of ferroptosis, and thereby, forming a mutually reinforcing "closed-loop" therapeutic approach.
Collapse
Affiliation(s)
- Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Jiajun Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
7
|
Chen M, Zhu Q, Zhang Z, Chen Q, Yang H. Recent Advances in Photosensitizer Materials for Light-Mediated Tumor Therapy. Chem Asian J 2024; 19:e202400268. [PMID: 38578217 DOI: 10.1002/asia.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) as an emerging therapeutic method has drawn much attention in the treatment field for cancer. Photosensitizer, which can convert photon energy into cytotoxic species under light irradiation, is the core component in PDT. The design of photosensitizers still faces problems of light absorption, targeting, penetration and oxygen dependence. With the rapid progress of material science, various photosensitizers have been developed to produce cytotoxic species for treatment of tumor with high selectivity, safety, and noninvasiveness. Besides, the applications of photosensitizers have been expanded to diverse cancer treatments such as drug release, optogenetics and immune checkpoint blockade. In this review, we summarize the recent advances of photosensitizers in various therapeutic methods for cancer. Prevailing challenges and further prospects associated with photosensitizers are also discussed.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Qianru Zhu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
8
|
Wu C, Xia L, Feng W, Chen Y. MXene-Mediated Catalytic Redox Reactions for Biomedical Applications. Chempluschem 2024; 89:e202300777. [PMID: 38358020 DOI: 10.1002/cplu.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in orchestrating a myriad of physiological processes within living systems. With the advent of materdicine, an array of nanomaterials has been intricately engineered to influence the redox equilibrium in biological milieus, thereby pioneering a distinctive therapeutic paradigm predicated on ROS-centric biochemistry. Among these, two-dimensional carbides, nitrides, and carbonitrides, collectively known as MXenes, stand out due to their multi-valent and multi-elemental compositions, large surface area, high conductivity, and pronounced local surface plasmon resonance effects, positioning them as prominent contributors in ROS modulation. This review aims to provide an overview of the advancements in harnessing MXenes for catalytic redox reactions in various biological applications, including tumor, anti-infective, and anti-inflammatory therapies. The emphasis lies on elucidating the therapeutic mechanism of MXenes, involving both pro-oxidation and anti-oxidation processes, underscoring the redox-related therapeutic applications facilitated by self-catalysis, photo-excitation, and sono-excitation properties of MXenes. Furthermore, this review highlights the existing challenges and outlines future development trends in leveraging MXenes for ROS-involving disease treatments, marking a significant step towards the integration of these nanomaterials into clinical practice.
Collapse
Affiliation(s)
- Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| |
Collapse
|
9
|
Ju M, Yang L, Wang G, Zong F, Shen Y, Wu S, Tang X, Yu D. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy. Biomater Sci 2024; 12:2831-2840. [PMID: 38683541 DOI: 10.1039/d4bm00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality employed for the treatment of various types of cancers, localized infections, and other diseases. Upon illumination, the photo-excited photosensitizer generates singlet oxygen and other reactive species, thereby inducing cytotoxicity in the target cells. The hypoxic tumour microenvironment (TME), however, poses a limitation on the supply of oxygen in tumour tissues. Moreover, under such conditions, tumour metastasis and drug resistance frequently occur, further compromising the efficacy of PDT in combating tumours. Traditionally, type I photosensitizers with lower oxygen consumption demonstrate significant potential in overcoming hypoxic environments and play a crucial role in determining the therapeutic efficacy of PDT because type I photosensitizers can generate highly cytotoxic free radicals. In comparison, type II photosensitizers exhibit high oxygen dependence. The rate of reactive oxygen species (ROS) generation in the type II process is significantly higher than that in the type I process. Thus, the efficiency and selectivity of PDT depend on the properties of the photosensitizer. Here, the recent development and application of type I and type II photosensitizers, mainly in the past year, are summarized. The design methods, electronic structures, photophysical properties, lipophilic properties, electric charge, and other molecular characteristics of these photosensitizers are discussed in detail. These modifications alter the microstructure of photosensitizers and directly impact the results of PDT. The main content of this paper will have a positive promoting and inspiring effect on the future development of PDT.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guowei Wang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Yu Shen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Li Y, Zhou H, Zhao Z, Yan S, Chai Y. Mitoxantrone encapsulated photosensitizer nanomicelle as carrier-free theranostic nanomedicine for near-infrared fluorescence imaging-guided chemo-photodynamic combination therapy on cancer. Int J Pharm 2024; 655:124025. [PMID: 38513816 DOI: 10.1016/j.ijpharm.2024.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Combination therapy exhibits higher efficacy than any single therapy, inspiring various nanocarrier-assisted multi-drug co-delivery systems for the combined treatment of cancer. However, most nanocarriers are inert and non-therapeutic and have potential side effects. Herein, an amphiphilic polymer composed of a hydrophobic photosensitizer and hydrophilic poly(ethylene glycol) was employed as the nanocarriers and photosensitizers to encapsulate the chemotherapeutic drug mitoxantrone for chemo-photodynamic combination therapy. The resulting nanodrug consisted solely of pharmacologically active ingredients, thus avoiding potential toxicity induced by inert excipients. This multifunctional nanoplatform demonstrated significantly superior treatment performance compared to monotherapy for colorectal cancer, both in vitro and in vivo, achieving near-infrared fluorescence imaging-mediated chemo-photodynamic combined eradication of malignancy.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China.
| | - Huimin Zhou
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Ziwei Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Susu Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yichao Chai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Qiu J, Zhao H, Mu Z, Chen J, Gu H, Gu C, Xing G, Qin X, Liu X. Turning Nonemissive CsPb 2Br 5 Crystals into High-Performance Scintillators through Alkali Metal Doping. NANO LETTERS 2024; 24:2503-2510. [PMID: 38258747 DOI: 10.1021/acs.nanolett.3c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - He Zhao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Mu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jiaye Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Chang Gu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Xian Qin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, P. R. China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
12
|
Alvarez N, Sevilla A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int J Mol Sci 2024; 25:1023. [PMID: 38256096 PMCID: PMC10815790 DOI: 10.3390/ijms25021023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Photodynamic therapy (PDT) is a two-stage treatment that implies the use of light energy, oxygen, and light-activated compounds (photosensitizers) to elicit cancerous and precancerous cell death after light activation (phototoxicity). The biophysical, bioengineering aspects and its combinations with other strategies are highlighted in this review, both conceptually and as they are currently applied clinically. We further explore the recent advancements of PDT with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors as well as the combination of PDT with radiotherapy and immunotherapy as future promising cancer treatments. Finally, we emphasize the potential significance of organoids as physiologically relevant models for PDT.
Collapse
Affiliation(s)
- Niuska Alvarez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona (IBUB), 08036 Barcelona, Spain
| |
Collapse
|
13
|
Xie Y, Li Z, Zhao C, Lv R, Li Y, Zhang Z, Teng M, Wan Q. Recent advances in aggregation-induced emission-active type I photosensitizers with near-infrared fluorescence: From materials design to therapeutic platform fabrication. LUMINESCENCE 2024; 39:e4621. [PMID: 38044321 DOI: 10.1002/bio.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
Near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) technology plays an important role in treating various diseases and still attracts increasing research interests for developing novel photosensitizers (PSs) with outstanding performances. Conventional PSs such as porphyrin and rhodamine derivatives have easy self-aggregation properties in the physiological environment due to their inherent hydrophobic nature caused by their rigid molecular structure that induces strong intermolecular stacking π-π interaction, leading to serious fluorescence quenching and cytotoxic reactive oxygen species (ROS) reduction. Meanwhile, hypoxia is an inherent barrier in the microenvironment of solid tumors, seriously restricting the therapeutic outcome of conventional PDT. Aforementioned disadvantages should be overcome urgently to enhance the therapeutic effect of PSs. Novel NIR fluorescence-guided type I PSs with aggregation-induced emission (AIE), which features the advantages of improving fluorescent intensity and ROS generation efficiency at aggregation as well as outstanding oxygen tolerance, bring hope for resolving aforementioned problems simultaneously. At present, plenty of research works fully demonstrates the advancement of AIE-active PDT based on type I PSs. In this review, cutting-edge advances focusing on AIE-active NIR type I PSs that include the aspects of the photochemical mechanism of type I ROS generation, various molecular structures of reported type I PSs with NIR fluorescence and their design strategies, and typical anticancer applications are summarized. Finally, a brief conclusion is obtained, and the underlying challenges and prospects of AIE-active type I PSs are proposed.
Collapse
Affiliation(s)
- Yili Xie
- College of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| | - Zhijia Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Zhao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Ruizhi Lv
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Yan Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Zhihong Zhang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, China
| |
Collapse
|