1
|
Buehler A, Brown EL, Eckstein M, Thoma OM, Wachter F, Mandelbaum H, Ludwig P, Claßen M, Oraiopoulou ME, Rother U, Neurath MF, Woelfle J, Waldner MJ, Friedrich O, Knieling F, Bohndiek SE, Regensburger AP. Guided Multispectral Optoacoustic Tomography for 3D Imaging of the Murine Colon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413434. [PMID: 39836529 DOI: 10.1002/advs.202413434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Multispectral optoacoustic tomography is a promising medical imaging modality that combines light and sound to provide molecular imaging information at depths of several centimeters, based on the optical absorption of endogenous chromophores, such as hemoglobin. Assessment of inflammatory bowel disease has emerged as a promising clinical application of optoacoustic tomography. In this context, preclinical studies in animal models are essential to identify novel disease-specific imaging biomarkers and understand findings from emerging clinical pilot studies, however to-date, these studies have been limited by the precise identification of the bowel wall. Herein, a transrectal-absorber guide is applied, serving as a high-contrast landmark for 3D optoacoustic tomography of the colon. This study shows that guided multispectral optoacoustic tomography is able to measure changes in blood oxygenation status over the course of acute, chemically-induced colitis in mice and correlates with standard disease activity scores. This novel approach depicts intestinal hemoglobin composition non-invasively during murine inflammation. These results underscore the potential for optoacoustic imaging in translational inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Emma L Brown
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Felix Wachter
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Merle Claßen
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Mariam-Eleni Oraiopoulou
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91052, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Sarah E Bohndiek
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| |
Collapse
|
2
|
Buehler A, Brown EL, Nedoschill E, Eckstein M, Ludwig P, Wachter F, Mandelbaum H, Raming R, Oraiopoulou M, Paulus L, Rother U, Friedrich O, Neurath MF, Woelfle J, Waldner MJ, Knieling F, Bohndiek SE, Regensburger AP. In Vivo Assessment of Deep Vascular Patterns in Murine Colitis Using Optoacoustic Mesoscopic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404618. [PMID: 39439243 PMCID: PMC11615813 DOI: 10.1002/advs.202404618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 10/25/2024]
Abstract
The analysis of vascular morphology and functionality enables the assessment of disease activity and therapeutic effects in various pathologies. Raster-scanning optoacoustic mesoscopy (RSOM) is an imaging modality that enables the visualization of superficial vascular networks in vivo. In murine models of colitis, deep vascular networks in the colon wall can be visualized by transrectal absorber guide raster-scanning optoacoustic mesoscopy (TAG-RSOM). In order to accelerate the implementation of this technology in translational studies of inflammatory bowel disease, an image-processing pipeline for TAG-RSOM data has been developed. Using optoacoustic data from a murine model of chemically-induced colitis, different image segmentation methods are compared for visualization and quantification of deep vascular patterns in terms of vascular network length and complexity, blood volume, and vessel diameter. The presented image-processing pipeline for TAG-RSOM enables label-free in vivo assessment of changes in the vascular network in murine colitis with broad applications for inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma L. Brown
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Felix Wachter
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Roman Raming
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | | | - Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
3
|
Li Y, Gröhl J, Haney B, Caranovic M, Lorenz-Meyer E, Papatheodorou N, Kempf J, Regensburger AP, Nedoschill E, Buehler A, Siebenlist G, Lang W, Uder M, Neurath MF, Waldner M, Knieling F, Rother U. Teachability of multispectral optoacoustic tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400106. [PMID: 38719459 DOI: 10.1002/jbio.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.
Collapse
Affiliation(s)
- Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Janek Gröhl
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Briain Haney
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Milenko Caranovic
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Lorenz-Meyer
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nikolaos Papatheodorou
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julius Kempf
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Sun X, Peng Y, He P, Cheng H, Li D, Liu H, Lin H, Liu G. Repurposing indocyanine green: exploring the potential of an old drug in modern medicine. NANOSCALE 2024; 16:11411-11428. [PMID: 38860512 DOI: 10.1039/d4nr00283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The repurposing of existing drugs, referred to as theranostics, has made profound impacts on precision medicine. Indocyanine green (ICG), a well-established and clinical dye, has continued to be a star agent, described as a multifunctional molecule with concurrent photo- or sono-sensitiveness capabilities and co-delivery accessibility, showing remarkable potential in the area of unimodal or multimodal imaging-guided therapy of various diseases, leading to the extensive consideration of immediate clinical translations. In this review, we strive to bring the understanding of repurposing performance assessment for ICG into practice by clarifying the relationships between its features and applicability. Specifically, we address the obstacles encountered in the process of developing an ICG repurposing strategy, as well as the noteworthy advancements made in the field of ICG repurposing. We also go into detail about the structure-function correlations of drugs containing ICG and how different structural groups significantly affect the physicochemical properties.
Collapse
Affiliation(s)
- Xinfei Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yisheng Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Noversa de Sousa R, Tascilar K, Corte G, Atzinger A, Minopoulou I, Ohrndorf S, Waldner M, Schmidkonz C, Kuwert T, Knieling F, Kleyer A, Ramming A, Schett G, Simon D, Fagni F. Metabolic and molecular imaging in inflammatory arthritis. RMD Open 2024; 10:e003880. [PMID: 38341194 PMCID: PMC10862311 DOI: 10.1136/rmdopen-2023-003880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
It is known that metabolic shifts and tissue remodelling precede the development of visible inflammation and structural organ damage in inflammatory rheumatic diseases such as the inflammatory arthritides. As such, visualising and measuring metabolic tissue activity could be useful to identify biomarkers of disease activity already in a very early phase. Recent advances in imaging have led to the development of so-called 'metabolic imaging' tools that can detect these changes in metabolism in an increasingly accurate manner and non-invasively.Nuclear imaging techniques such as 18F-D-glucose and fibroblast activation protein inhibitor-labelled positron emission tomography are increasingly used and have yielded impressing results in the visualisation (including whole-body staging) of inflammatory changes in both early and established arthritis. Furthermore, optical imaging-based bedside techniques such as multispectral optoacoustic tomography and fluorescence optical imaging are advancing our understanding of arthritis by identifying intra-articular metabolic changes that correlate with the onset of inflammation with high precision and without the need of ionising radiation.Metabolic imaging holds great potential for improving the management of patients with inflammatory arthritis by contributing to early disease interception and improving diagnostic accuracy, thereby paving the way for a more personalised approach to therapy strategies including preventive strategies. In this narrative review, we discuss state-of-the-art metabolic imaging methods used in the assessment of arthritis and inflammation, and we advocate for more extensive research endeavours to elucidate their full field of application in rheumatology.
Collapse
Affiliation(s)
- Rita Noversa de Sousa
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Serviço de Medicina Interna, Hospital Pedro Hispano, Matosinhos, Portugal
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Giulia Corte
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Waldner
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Institute for Medical Engineering, Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Hoerning A, Jüngert J, Siebenlist G, Knieling F, Regensburger AP. Ultrasound in Pediatric Inflammatory Bowel Disease-A Review of the State of the Art and Future Perspectives. CHILDREN (BASEL, SWITZERLAND) 2024; 11:156. [PMID: 38397268 PMCID: PMC10887069 DOI: 10.3390/children11020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of relapsing, chronic diseases of the gastrointestinal tract that, in addition to adults, can affect children and adolescents. To detect relapses of inflammation, these patients require close observation, frequent follow-up, and therapeutic adjustments. While reference standard diagnostics include anamnestic factors, laboratory and stool sample assessment, performing specific imaging in children and adolescents is much more challenging than in adults. Endoscopic and classic cross-sectional imaging modalities may be invasive and often require sedation for younger patients. For this reason, intestinal ultrasound (IUS) is becoming increasingly important for the non-invasive assessment of the intestine and its inflammatory affection. In this review, we would like to shed light on the current state of the art and provide an outlook on developments in this field that could potentially spare these patients more invasive follow-up procedures.
Collapse
Affiliation(s)
- André Hoerning
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Assi H, Cao R, Castelino M, Cox B, Gilbert FJ, Gröhl J, Gurusamy K, Hacker L, Ivory AM, Joseph J, Knieling F, Leahy MJ, Lilaj L, Manohar S, Meglinski I, Moran C, Murray A, Oraevsky AA, Pagel MD, Pramanik M, Raymond J, Singh MKA, Vogt WC, Wang L, Yang S, Members of IPASC, Bohndiek SE. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption. PHOTOACOUSTICS 2023; 32:100539. [PMID: 37600964 PMCID: PMC10432856 DOI: 10.1016/j.pacs.2023.100539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group.
Collapse
Affiliation(s)
- Hisham Assi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospital, London, UK
| | - Ben Cox
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | | | - Janek Gröhl
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kurinchi Gurusamy
- Department of Surgical Biotechnology, University College London, London, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aoife M. Ivory
- Department of Medical, Marine and Nuclear Physics, National Physical Laboratory, Teddington, UK
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Martin J. Leahy
- School of Natural Sciences – Physics, University of Galway, Galway, Ireland
| | | | | | - Igor Meglinski
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Carmel Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Andrea Murray
- Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Salford Care Organisation, NCA NHS Foundation Trust, UK
| | | | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Jason Raymond
- Department of Engineering Science, University of Oxford, UK
| | | | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lihong Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shufan Yang
- School of Computing, Edinburgh Napier University, UK
| | - Members of IPASC
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|