1
|
Griffin KV, Saunders MN, Lyssiotis CA, Shea LD. Engineering immunity using metabolically active polymeric nanoparticles. Trends Biotechnol 2024:S0167-7799(24)00345-7. [PMID: 39732608 DOI: 10.1016/j.tibtech.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes. In this review we discuss the role that polymeric NPs can play in shaping immunometabolism and subsequent immune system activity through particle-mediated delivery of metabolically active agents as either structural components or cargo.
Collapse
Affiliation(s)
- Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
4
|
Maduka CV, Makela AV, Tundo A, Ural E, Stivers KB, Kuhnert MM, Alhaj M, Hoque Apu E, Ashammakhi N, Hankenson KD, Narayan R, Elisseeff JH, Contag CH. Regulating the proinflammatory response to composite biomaterials by targeting immunometabolism. Bioact Mater 2024; 40:64-73. [PMID: 38948254 PMCID: PMC11214186 DOI: 10.1016/j.bioactmat.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Composite biomaterials comprising polylactide (PLA) and hydroxyapatite (HA) are applied in bone, cartilage and dental regenerative medicine, where HA confers osteoconductive properties. However, after surgical implantation, adverse immune responses to these composites can occur, which have been attributed to size and morphology of HA particles. Approaches to effectively modulate these adverse immune responses have not been described. PLA degradation products have been shown to alter immune cell metabolism (immunometabolism), which drives the inflammatory response. Accordingly, to modulate the inflammatory response to composite biomaterials, inhibitors were incorporated into composites comprised of amorphous PLA (aPLA) and HA (aPLA + HA) to regulate glycolytic flux. Inhibition at specific steps in glycolysis reduced proinflammatory (CD86+CD206-) and increased pro-regenerative (CD206+) immune cell populations around implanted aPLA + HA. Notably, neutrophil and dendritic cell (DC) numbers along with proinflammatory monocyte and macrophage populations were decreased, and Arginase 1 expression among DCs was increased. Targeting immunometabolism to control the proinflammatory response to biomaterial composites, thereby creating a pro-regenerative microenvironment, is a significant advance in tissue engineering where immunomodulation enhances osseointegration and angiogenesis, which could lead to improved bone regeneration.
Collapse
Affiliation(s)
- Chima V. Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ashley V. Makela
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Evran Ural
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Katlin B. Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Maxwell M. Kuhnert
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, 37917, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ramani Narayan
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christopher H. Contag
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48864, USA
| |
Collapse
|
5
|
Maduka CV, Schmitter-Sánchez AD, Makela AV, Ural E, Stivers KB, Pope H, Kuhnert MM, Habeeb OM, Tundo A, Alhaj M, Kiselev A, Chen S, Donneys A, Winton WP, Stauff J, Scott PJH, Olive AJ, Hankenson KD, Narayan R, Park S, Elisseeff JH, Contag CH. Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials. Nat Biomed Eng 2024; 8:1308-1321. [PMID: 39367264 DOI: 10.1038/s41551-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Circulating monocytes infiltrate and coordinate immune responses in tissues surrounding implanted biomaterials and in other inflamed tissues. Here we show that immunometabolic cues in the biomaterial microenvironment govern the trafficking of immune cells, including neutrophils and monocytes, in a manner dependent on the chemokine receptor 2 (CCR2) and the C-X3-C motif chemokine receptor 1 (CX3CR1). This affects the composition and activation states of macrophage and dendritic cell populations, ultimately orchestrating the relative composition of pro-inflammatory, transitory and anti-inflammatory CCR2+, CX3CR1+ and CCR2+ CX3CR1+ immune cell populations. In amorphous polylactide implants, modifying immunometabolism by glycolytic inhibition drives a pro-regenerative microenvironment principally by myeloid cells. In crystalline polylactide implants, together with arginase-1-expressing myeloid cells, T helper 2 cells and γδ+ T cells producing interleukin-4 substantially contribute to shaping the metabolically reprogrammed pro-regenerative microenvironment. Our findings inform the premise that local metabolic states regulate inflammatory processes in the biomaterial microenvironment.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| | - Axel D Schmitter-Sánchez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Katlin B Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hunter Pope
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Shoue Chen
- School of Packaging, Michigan State University, East Lansing, MI, USA
| | - Alexis Donneys
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Olive
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramani Narayan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Zhang D, Xu X, Lu Y, Guo L. Behavioral toxicity and neurotoxic mechanisms of PLA-PBAT biodegradable microplastics in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172354. [PMID: 38614330 DOI: 10.1016/j.scitotenv.2024.172354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Escalation of ecological concern due to biodegradable plastics has attracted the attention of many contemporary researchers. This study searched to investigate the acute and sub-chronic toxicity of polylactic acid (PLA) and polybutyleneadipate-co-terephthalate (PLA-PBAT) bio-microplastics on 3-month-old zebrafish to elucidate their potential toxic mechanisms. Acute toxicity assessments revealed 96 h-LC50 value of 12.69 mg/L for PLA-PBAT. Sub-chronic exposure of over 21 days revealed deviations in critical behavioral patterns and physiological indicators. In treated groups, weight gain and specific growth rates were significantly lower than those obtained for the control group, such that high doses induced significant reductions in total organ coefficient (p < 0.05). A positive correlation was observed between zebrafish mortality and increased doses. Detailed behavioral evaluations revealed a dose-dependent decrease in the speed and range of swimming, along with modifications in shoaling behavior, anxiety-like responses, and avoidance behaviors. Brain tissues transcriptomic analyses revealed the molecular responses underlying sub-chronic exposure to PLA-PBAT. Totally 702 DEGs and 5 KEGG pathways were significantly identified in low-dose group, with the top 2 significant pathways being ribosome pathway and cytokine-cytokine receptor interaction pathway. Totally 650 DEGs and 5 KEGG pathways were significantly identified in medium-dose group, with the top 2 significant pathways being Herpes simplex virus 1 infection pathway and complement and coagulation cascades pathway. Totally 1778 DEGs and 16 KEGG pathways were significantly identified in high-dose group, with the top 2 significant pathways being metabolism of xenobiotics by cytochrome P450 and drug metabolism - cytochrome P450 pathway. Most significantly enriched pathways are associated with immune responses. The validation of key gene in cytokine-cytokine receptor interaction pathway also confirmed its high correlation with behavioral indicators. These results indicate that PLA-PBAT is likely to cause behavioral abnormalities in zebrafish by triggering immune dysregulation in the brain.
Collapse
Affiliation(s)
- Deyong Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China
| | - Xiaolu Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liang Guo
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
7
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Almeida D, Dias M, Teixeira B, Frazão C, Almeida M, Gonçalves G, Oliveira M, Pinto RJB. Optimized Synthesis of Poly(Lactic Acid) Nanoparticles for the Encapsulation of Flutamide. Gels 2024; 10:274. [PMID: 38667693 PMCID: PMC11049099 DOI: 10.3390/gels10040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Biopolymeric nanoparticles (NPs) have gained significant attention in several areas as an alternative to synthetic polymeric NPs due to growing environmental and immunological concerns. Among the most promising biopolymers is poly(lactic acid) (PLA), with a reported high degree of biocompatibility and biodegradability. In this work, PLA NPs were synthesized according to a controlled gelation process using a combination of single-emulsion and nanoprecipitation methods. This study evaluated the influence of several experimental parameters for accurate control of the PLA NPs' size distribution and aggregation. Tip sonication (as the stirring method), a PLA concentration of 10 mg/mL, a PVA concentration of 2.5 mg/mL, and low-molecular-weight PLA (Mw = 5000) were established as the best experimental conditions to obtain monodisperse PLA NPs. After gelification process optimization, flutamide (FLU) was used as a model drug to evaluate the encapsulation capability of the PLA NPs. The results showed an encapsulation efficiency of 44% for this cytostatic compound. Furthermore, preliminary cell viability tests showed that the FLU@PLA NPs allowed cell viabilities above 90% up to a concentration of 20 mg/L. The comprehensive findings showcase that the PLA NPs fabricated using this straightforward gelification method hold promise for encapsulating cytostatic compounds, offering a novel avenue for precise drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Duarte Almeida
- TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (D.A.); (G.G.)
- Intelligent Systems Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
| | - Mariana Dias
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Beatriz Teixeira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (B.T.); (C.F.); (M.A.)
| | - Carolina Frazão
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (B.T.); (C.F.); (M.A.)
| | - Mónica Almeida
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (B.T.); (C.F.); (M.A.)
| | - Gil Gonçalves
- TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (D.A.); (G.G.)
- Intelligent Systems Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
| | - Miguel Oliveira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (B.T.); (C.F.); (M.A.)
| | - Ricardo J. B. Pinto
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
9
|
Diaz Varela JY, Burciaga Jurado LG, Olivas Armendáriz I, Martínez Pérez CA, Chapa González C. The role of multi-walled carbon nanotubes in enhancing the hydrolysis and thermal stability of PLA. Sci Rep 2024; 14:8405. [PMID: 38600178 PMCID: PMC11006862 DOI: 10.1038/s41598-024-58755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Polylactic acid (PLA) is a bioresorbable and biodegradable polymer extensively used in various biomedical and engineering applications. In this study, we investigated the mass loss and thermal properties of PLA-multi-walled carbon nanotube (MWCNT) composites under simulated physiological conditions. The composites were prepared by melting PLA with 0.1, 0.5, 1.0, and 5.0 wt% MWCNTs using an ultrasonic agitator, and FTIR analysis confirmed composite formation. Subsequently, the composites were subjected to hydrolysis under simulated physiological conditions (pH 7.4 and 37 °C) for up to 60 days. The results revealed that the mass loss of the composites decreased with increasing MWCNT content, suggesting that the presence of MWCNTs decelerated the hydrolysis process. On day 58, the mass loss of pure PLA was 12.5%, decreasing to 8.34% with 0.1% MWCNT, 5.94% with 0.5% MWCNT, 4.59% with 1% MWCNT, and 3.54% with 5.0% MWCNT. This study offers valuable insights into the behavior of PLA-MWCNT composites under physiologically simulated conditions, facilitating the development of new polymer composites with enhanced thermal stability and degradation resistance for biomedical applications.
Collapse
Affiliation(s)
- Judith Yareli Diaz Varela
- Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
- Grupo de Nanomedicina, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Lucero Guadalupe Burciaga Jurado
- Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Imelda Olivas Armendáriz
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Carlos Alberto Martínez Pérez
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Christian Chapa González
- Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico.
- Grupo de Nanomedicina, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
10
|
McNally DL, Macdougall LJ, Kirkpatrick BE, Maduka CV, Hoffman TE, Fairbanks BD, Bowman CN, Spencer SL, Anseth KS. Reversible Intracellular Gelation of MCF10A Cells Enables Programmable Control Over 3D Spheroid Growth. Adv Healthc Mater 2024; 13:e2302528. [PMID: 38142299 PMCID: PMC10939856 DOI: 10.1002/adhm.202302528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Indexed: 12/25/2023]
Abstract
In nature, some organisms survive extreme environments by inducing a biostatic state wherein cellular contents are effectively vitrified. Recently, a synthetic biostatic state in mammalian cells is achieved via intracellular network formation using bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions between functionalized poly(ethylene glycol) (PEG) macromers. In this work, the effects of intracellular network formation on a 3D epithelial MCF10A spheroid model are explored. Macromer-transfected cells are encapsulated in Matrigel, and spheroid area is reduced by ≈50% compared to controls. The intracellular hydrogel network increases the quiescent cell population, as indicated by increased p21 expression. Additionally, bioenergetics (ATP/ADP ratio) and functional metabolic rates are reduced. To enable reversibility of the biostasis effect, a photosensitive nitrobenzyl-containing macromer is incorporated into the PEG network, allowing for light-induced degradation. Following light exposure, cell state, and proliferation return to control levels, while SPAAC-treated spheroids without light exposure (i.e., containing intact intracellular networks) remain smaller and less proliferative through this same period. These results demonstrate that photodegradable intracellular hydrogels can induce a reversible slow-growing state in 3D spheroid culture.
Collapse
Affiliation(s)
- Delaney L McNally
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Chima V Maduka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy E Hoffman
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L Spencer
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|