1
|
Hou W, Hou S, Gu Y, Zhang S, Ma P, Hu HY, Xu H. Selenium(II)-Nitrogen Exchange (SeNEx) Chemistry: A Good Chemistry Suitable for Nanomole-Scale Parallel Synthesis, DNA-encoded Library Synthesis and Bioconjugation. Chembiochem 2024; 25:e202400641. [PMID: 39379308 DOI: 10.1002/cbic.202400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
The continuous development of click reactions with new connecting linkage is crucial for advancing the frontiers of click chemistry. Selenium-nitrogen exchange (SeNEx) chemistry, a versatile chemistry in click chemistry, represents an all-encompassing term for nucleophilic substitution events that replace nitrogen at an electrophilic selenium(II) center, enabling the flexible and efficient assembly of linkages around a Se(II) core. Several SeNEx chemistries have been developed inspired by the biochemical reaction between Ebselen and cysteine residue, and demonstrated significant potential in on-plate nanomole-scale parallel synthesis, selenium-containing DNA-encoded library (SeDEL) synthesis, as well as peptide and protein bioconjugation. This concept aims to present the origins, advancements, and applications of selenium(II)-nitrogen exchange (SeNEx) chemistry while also outlining the potential directions for future research in this field.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology Department, Hangzhou, 310014, China
| | - Shaoneng Hou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology Department, Hangzhou, 310014, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking UnionMedical College, Beijing, 100050, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Dockerill M, Sabale PM, Russo F, Barluenga S, Winssinger N. Translation of Deoxyribonucleic Acid into Synthetic Alpha Helical Peptides for Darwinian Evolution. JACS AU 2024; 4:4013-4022. [PMID: 39483244 PMCID: PMC11522901 DOI: 10.1021/jacsau.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity. The study also highlights the need to design libraries such that the chemistry avoids biases from the heterogeneous yield in DTS.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Pramod M. Sabale
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Francesco Russo
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
4
|
Huang Q, Gu Y, Qin A, Ma P, Xu H, Zhang S. FSO 2N 3-Mediated On-DNA Diazo-Transfer Chemistry. ACS Med Chem Lett 2024; 15:1591-1597. [PMID: 39291003 PMCID: PMC11403730 DOI: 10.1021/acsmedchemlett.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
DNA-encoded library (DEL) is a powerful hit selection technique in both basic science and innovative drug discovery. In this study, we report a robust and straightforward DNA-compatible diazo-transfer reaction utilizing FSO2N3 as the diazo-transfer reagent in solution. This reaction demonstrates high conversions and facile operation while being metal-free and maintaining high levels of DNA fidelity. It is also compatible with a wide range of substrates, allowing for convenient access to both aliphatic and aromatic amines. Consequently, it will further enrich the DEL chemistry toolbox.
Collapse
Affiliation(s)
- Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P.R. China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
5
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Ye Y, Berry M, Bock WJ, Cheng K, Nair SK, Park CS, Patman RL, Sakata S, Tran-Dubé M, Donaldson JS, Yang G, Liu G. Construction of Isoquinolone Scaffolds on DNA via Rhodium(III)-Catalyzed C-H Activation. Org Lett 2024; 26:3338-3342. [PMID: 38608176 DOI: 10.1021/acs.orglett.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Isoquinolone is one of the most common heterocyclic core structures in countless natural products and many bioactive compounds. Here, a highly efficient approach to synthesize isoquinolone scaffolds on DNA via rhodium(III)-catalyzed C-H activation has been described. This chemistry transformation is robust and has shown good compatibility with DNA, which is suitable for DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Yusong Ye
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| | - Madeline Berry
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - William J Bock
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Kunpeng Cheng
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| | - Sajiv K Nair
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Christiana S Park
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ryan L Patman
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Sylvie Sakata
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Joyann S Donaldson
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan P. R. China
| |
Collapse
|
7
|
Zhang Y, Xue JY, Su XC, Xiao WJ, Lv JY, Shi WX, Zou Y, Yan M, Zhang XJ. Skeletal Editing of Benzene Motif: Photopromoted Transannulation for Synthesis of DNA-Encoded Seven-Membered Rings. Org Lett 2024; 26:2212-2217. [PMID: 38452132 DOI: 10.1021/acs.orglett.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In this report, we present a photopromoted, metal-free transannulation of phenyl azides for the synthesis of DNA-encoded seven-membered rings. The transformation is efficiently achieved through a skeletal editing strategy targeting the benzene motif coupled with a Reversible Adsorption to Solid Support (RASS) strategy. A variety of valuable DNA-encoded seven-membered ring compounds, including DNA-encoded 3H-azepines, azepinones, and unnatural amino acids, are now accessible. Crucially, this DNA-compatible protocol can also be applied for the introduction of complex molecules, as exemplified by Lorcaserin and Betahistine. The selective conversion of readily available phenyl rings into high-value seven-membered rings offers a promising avenue for the construction of diversified and drug-like DNA-encoded library.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Zhang J, Liu J, Zhang G, He X, Xiong F, Fan X, Li Y, Li Y. Synthesis of Diacylhydrazine Derivatives Based on Tetrazole-Focused DNA-Encoded Library. Org Lett 2024; 26:1094-1099. [PMID: 38277138 DOI: 10.1021/acs.orglett.3c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jinlu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|