1
|
De Figueiredo I, Bartenlian B, Hamouda F, Bouville D, Pallandre A, Halgand F. From Microsize Chromatographic Manufacturing for Fast Desalting to Its Characterization. Anal Chem 2024; 96:15907-15914. [PMID: 39344030 DOI: 10.1021/acs.analchem.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microfluidic devices are becoming increasingly popular in protein analysis due to their ability to reduce sample and buffer volumes. However, there is a research gap concerning the coupling of this technology with ion mobility and mass spectrometry (IM-MS). This study aims to fill this void by introducing the manufacture and the characterization of a microsize exclusion chromatography (μSEC) module for fast desalting and its integration into microfluidics, along with its coupling to electrospray ionization and ion mobility mass spectrometry (ESI-IM-MS). To assess the feasibility of this approach, the desalting of α-synuclein (αS) was investigated using Bio Spin P6 gel as a stationary phase in the manufacture of a microfluidic device. αS detection by MS gives insight into the sample purity, while IM combined with MS provides information about protein structure. IM allowed both the recording of qualitative and quantitative information. The qualitative data provided a map of the conformers in equilibrium, while the calculation of the respective abundances (quantitative profile) of the conformers afforded the opportunity to describe the dynamics of the system. Our experiments, serving as proof-of-concept, demonstrate αS desalting, exchange buffer efficiency, and reduced solvent usage, without compromising the protein's structure.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| | - Bernard Bartenlian
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - Frédéric Hamouda
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - David Bouville
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| |
Collapse
|
2
|
Maddocks GM, Eisenstein M, Soh HT. Biosensors for Parkinson's Disease: Where Are We Now, and Where Do We Need to Go? ACS Sens 2024; 9:4307-4327. [PMID: 39189973 DOI: 10.1021/acssensors.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's Disease is the second most common neurological disease in the United States, yet there is no cure, no pinpointed cause, and no definitive diagnostic procedure. Parkinson's is typically diagnosed when patients present with motor symptoms such as slowness of movement and tremors. However, none of these are specific to Parkinson's, and a confident diagnosis of Parkinson's is typically only achieved when 60-80% of dopaminergic neurons are no longer functioning, at which point much of the damage to the brain is irreversible. This Perspective details ongoing efforts and accomplishments in biosensor research with the goal of overcoming these issues for Parkinson's diagnosis and care, with a focus on the potential impact of early diagnosis and associated opportunities to pinpoint a cause and a cure. We critically analyze the strengths and shortcomings of current technologies and discuss the ideal characteristics of a diagnostic technology toolbox to guide future research decisions in this space. Finally, we assess what role biosensors can play in facilitating precision medicine for Parkinson's patients.
Collapse
Affiliation(s)
- Grace M Maddocks
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - M Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Ma ZL, Wang ZL, Zhang FY, Liu HX, Mao LH, Yuan L. Biomarkers of Parkinson's Disease: From Basic Research to Clinical Practice. Aging Dis 2024; 15:1813-1830. [PMID: 37815899 PMCID: PMC11272192 DOI: 10.14336/ad.2023.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized pathologically by dopaminergic neuron loss and the formation of Lewy bodies, which are enriched with aggregated α-synuclein (α-syn). PD currently has no cure, but therapeutic strategies are available to alleviate symptoms. Early diagnosis can greatly improve therapeutic interventions, but the clinical diagnosis of PD remains challenging and depends mainly on clinical features and imaging tests. Efficient and specific biomarkers are crucial for the diagnosis, monitoring, and evaluation of PD. Here, we reviewed the biomarkers of PD in different tissues and biofluids, along with the current clinical biochemical detection methods. We found that the sensitivity and specificity of single biomarkers are limited, and selecting appropriate indicators for combined detection can improve the diagnostic accuracy of PD.
Collapse
Affiliation(s)
| | | | - Fei-yue Zhang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| | - Hong-xun Liu
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| | - Li-hong Mao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| | - Lin Yuan
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Akowuah PK, Owusu E, Totoe D. Tear α-synuclein as a biomarker for Parkinson's disease: A systematic review and meta-analysis. Optom Vis Sci 2024; 101:485-492. [PMID: 39094023 DOI: 10.1097/opx.0000000000002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Parkinson's disease symptoms mostly manifest after significant and irreversible neuropathology. Hence, there is a need to identify biomarkers that can provide indications of disease before significant neuronal degeneration occurs. OBJECTIVE To estimate the difference in the concentration of α-synuclein protein in tears between individuals with Parkinson's disease and healthy controls. DATA SOURCES PubMed, Scopus, and Web of Science. The last database search was on December 20, 2023. STUDY ELIGIBILITY CRITERIA Primary prospective studies in humans measuring the level of α-synuclein in tears and clinical outcomes reported using mean or median. PARTICIPANTS AND INTERVENTIONS Individuals with Parkinson's disease and healthy controls. STUDY APPRAISAL AND SYNTHESIS METHODS The risk of bias was assessed using the Newcastle-Ottawa Scale. The I2 statistic was used to estimate heterogeneity. The outcome measure was the difference in tear total and oligomeric α-synuclein. Mean difference (MD) was used to assess the outcome. The certainty of evidence was rated following the Grading of Recommendations Assessment and Development and Evaluation (GRADE) system. RESULTS Three hundred twenty-seven Parkinson's disease and 312 healthy control subjects from five studies and 177 Parkinson's disease and 166 healthy control subjects from two studies were included in total α-synuclein levels and oligomeric α-synuclein levels analysis, respectively. Total α-synuclein level was not different between Parkinson's disease and healthy controls (MD = 0.02 ng/mL [95% confidence interval {CI}: 0.00 to 0.05 ng/mL; I2 = 90%; Z = 1.79; p=0.07; number of studies = 5; GRADE rating = very low]). Stratifying the data based on disease duration, total α-synuclein was higher in subjects with Parkinson's disease duration ≥7 years compared with healthy controls (MD = 0.04 ng/mL [95% CI: 0.03 to 0.05 ng/mL; I2 = 0%; Z = 8.24, p<0.00001; number of studies = 2; GRADE rating = low]) but not different between the two groups (MD = -0.12 ng/mL (95% CI: -0.38 to 0.15 ng/mL; I2 = 93%; Z = 0.84, p=0.40; number of studies = 3; GRADE rating = very low]). Oligomeric α-synuclein level was higher in Parkinson's disease compared with controls (MD = 6.50 ng/mL [95% CI: 2.79 to 10.20 ng/mL; I2 = 94%; Z = 3.44; p=0.0006; number of studies = 2; GRADE rating = very low]). LIMITATIONS High heterogeneity between studies. Potential sources of heterogeneity could not be explored due to the limited number of studies. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Tear α-synuclein has the potential to be a noninvasive biomarker for Parkinson's disease. Studies are, however, needed to increase certainty in the biomarker and establish how the protein's changes in tears correlate with Parkinson's disease progression and severity.
Collapse
Affiliation(s)
| | - Ebenezer Owusu
- College of Optometry, University of Houston, Houston, Texas
| | | |
Collapse
|
5
|
Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary Biomarkers for Parkinson's Disease: A Systematic Review with Meta-Analysis. Cells 2024; 13:340. [PMID: 38391952 PMCID: PMC10887027 DOI: 10.3390/cells13040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disease which manifests with motor features, such as bradykinesia, resting tremor, rigidity, and postural instability. Using the non-invasive technique of saliva collection, we designed a systematic review to answer the question "Are salivary biomarkers reliable for the diagnosis of Parkinson's Disease?". Following inclusion and exclusion criteria, 30 studies were included in this systematic review (according to the PRISMA statement guidelines). Mostly proteins were reported as potential biomarkers in saliva. Based on meta-analysis, in PD patients, salivary levels of total alpha-synuclein were significantly decreased, and those of oligomeric alpha-synuclein were significantly increased. Also, according to pooled AUC, heme oxygenase-1 demonstrated significant predictive value for saliva-based PD diagnosis. In conclusion, some potential biomarkers, especially alpha-synuclein, can be altered in the saliva of PD patients, which could be reliably useful for early diagnosis of this neurodegenerative disease differentiating other synucleopathies.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.O.); (J.J.)
| | - Jakub Jankowski
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.O.); (J.J.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
6
|
Soni R, Mathur K, Shah J. An update on new-age potential biomarkers for Parkinson's disease. Ageing Res Rev 2024; 94:102208. [PMID: 38296162 DOI: 10.1016/j.arr.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that deals with dopaminergic deficiency in Substantia nigra pars compact (SNpc) region of the brain. Dopaminergic deficiency manifests into motor dysfunction. Alpha-synuclein protein aggregation is the source for inception of the pathology. Motor symptoms include rigidity, akinesia, tremor and gait dysfunction. Pre-motor symptoms are also seen in early stage of the disease; however, they are not distinguishable. Lack of early diagnosis in PD pathology poses a major challenge for development of disease modifying therapeutics. Substantial neuronal loss has already been occurred before the clinical manifestations appear and hence, it becomes impossible to halt the disease progression. Current diagnostics are majorly based on the clinical symptoms and thus fail to detect early progression of the disease. Thus, there is need for early diagnosis of PD, for detection of the disease at its inception. This will facilitate the effective use of therapies that halt the progression and will make remission possible. Many novel biomarkers are being developed that include blood-based biomarker, CSF biomarker. Other than that, there are non-invasive techniques that can detect biomarkers. We aim to discuss potential role of these new age biomarkers and their association with PD pathogenesis in this review.
Collapse
Affiliation(s)
- Ritu Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kirti Mathur
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
7
|
Kluge A, Iranzo A. Biofluid Detection of Pathological α-Synuclein in the Prodromal Phase of Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S323-S331. [PMID: 38995801 PMCID: PMC11494638 DOI: 10.3233/jpd-230429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/14/2024]
Abstract
Synucleinopathies are disorders characterized by the aggregation and deposition of pathological α-synuclein conformers. The underlying neurodegenerative processes begin years or decades before the onset of cardinal motor symptoms. This prodromal phase may manifest with various signs or symptoms. However, there are no current standardized laboratory tests to ascertain the progression and conversion of prodromal conditions such as mild cognitive impairment, isolated REM sleep behavior disorder or pure autonomic failure. The aim of this systematic review was to evaluate the diagnostic possibilities using human biofluids as source material to detect pathological α-synuclein in the prodromal phase of synucleinopathies. Our review identified eight eligible studies, that investigated pathological α-synuclein conformers using cerebrospinal fluid from patients with prodromal signs of synulceinopathies to differentiate this patient group from non-synucleinopathies, while only one study investigated this aspect using blood as medium. While previous studies clearly demonstrated a high diagnostic performance of α-synuclein seed amplification assays for differentiating synucleinopathies with Lewy bodies from healthy controls, only few analyses were performed focussing on individuals with prodromal disease. Nevertheless, results for the early detection of α-synuclein seeds using α-synuclein seed amplification assays were promising and may be of particular relevance for future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona University, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
8
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
9
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Santos-García D, Martínez-Valbuena I, Agúndez JAG. Alpha-Synuclein in Peripheral Tissues as a Possible Marker for Neurological Diseases and Other Medical Conditions. Biomolecules 2023; 13:1263. [PMID: 37627328 PMCID: PMC10452242 DOI: 10.3390/biom13081263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Diego Santos-García
- Department of Neurology, CHUAC—Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain;
| | - Iván Martínez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - José A. G. Agúndez
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
10
|
Mollenhauer B. Status of Current Biofluid Biomarkers in Parkinson's Disease. Mov Disord Clin Pract 2023; 10:S18-S20. [PMID: 37637982 PMCID: PMC10448129 DOI: 10.1002/mdc3.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Brit Mollenhauer
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Paracelsus‐Elena‐KlinikKasselGermany
| |
Collapse
|
11
|
Salaramoli S, Joshaghani HR, Hashemy SI. Salivary Biomarkers: Noninvasive Ways for Diagnosis of Parkinson's Disease. Neurol Res Int 2023; 2023:3555418. [PMID: 37434876 PMCID: PMC10332915 DOI: 10.1155/2023/3555418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Finding reliable biomarkers has a crucial role in Parkinson's disease (PD) assessments. Saliva is a bodily fluid, which might be used as a source of biomarkers for PD. Our article has reviewed several publications on salivary proteins in PD patients and their potential as biomarkers. We find out that α-Syn's proportion in oligomeric form is higher in PD patients' saliva, which is potent to use as a biomarker for PD. The salivary concentration of DJ-1 and alpha-amylase is lower in PD patients. Also, substance P level is more moderate in PD patients. Although salivary flow rate is decreased in PD patients, high levels of heme oxygenase and acetylcholinesterase might be used as noninvasive biomarkers. Salivary miRNAs (miR-153, miR-223, miR-874, and miR-145-3p) are novel diagnostic biomarkers that should be given more attention.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, Clarke CS, Hu MT, Huxford B, Jha A, Lambert C, Lawton M, Mills G, Noyce A, Piccini P, Pushparatnam K, Rochester L, Siu C, Williams-Gray CH, Zeissler ML, Zetterberg H, Carroll CB, Foltynie T, Schrag A. Outcome Measures for Disease-Modifying Trials in Parkinson's Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1011-1033. [PMID: 37545260 PMCID: PMC10578294 DOI: 10.3233/jpd-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Burnell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|