1
|
Bubble formation in high-viscosity liquids in step-emulsification microdevices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
He C, Jiang S, Zhu C, Ma Y, Fu T. Self-assembly of droplet swarms and its feedback on droplet generation in a step-emulsification microdevice with parallel microchannels. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Sheng L, Chen Y, Wang K, Deng J, Luo G. General rules of bubble formation in viscous liquids in a modified step T-junction microdevice. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Zhang Z, Jiang S, Zhu C, Ma Y, Fu T. Bubble formation in a step-emulsification microdevice with parallel microchannels. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Mi S, Fu T, Zhu C, Jiang S, Ma Y. Mechanism of bubble formation in step‐emulsification devices. AIChE J 2019. [DOI: 10.1002/aic.16777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Mi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shaokun Jiang
- The 718th Research Institute of China Shipbuilding Industry Corporation Handan China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
6
|
Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. Design and Scaling Up of Microchemical Systems: A Review. Annu Rev Chem Biomol Eng 2017; 8:285-305. [DOI: 10.1146/annurev-chembioeng-060816-101443] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The past two decades have witnessed a rapid development of microreactors. A substantial number of reactions have been tested in microchemical systems, revealing the advantages of controlled residence time, enhanced transport efficiency, high product yield, and inherent safety. This review defines the microchemical system and describes its components and applications as well as the basic structures of micromixers. We focus on mixing, flow dynamics, and mass and heat transfer in microreactors along with three strategies for scaling up microreactors: parallel numbering-up, consecutive numbering-up, and scale-out. We also propose a possible methodology to design microchemical systems. Finally, we provide a summary and future prospects.
Collapse
Affiliation(s)
- Jisong Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kai Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Andrew R. Teixeira
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Guangsheng Luo
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zheng C, Zhao B, Wang K, Luo G. Determination of kinetics of CO2absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique. AIChE J 2015. [DOI: 10.1002/aic.14972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Zheng
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Bochao Zhao
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|