1
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Zhao H, Li H, Tian C, Zhang L, Cheng Z. Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Light-Controlled Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Macromol Rapid Commun 2021; 42:e2100211. [PMID: 34028909 DOI: 10.1002/marc.202100211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Indexed: 11/08/2022]
Abstract
A facile and clean strategy for synthesizing unimodal polymethacrylates with narrow dispersity (Đ < 1.10) is successfully developed by a near-infrared (NIR) light-emitting diode (LED) light (λmax = 740 nm)-controlled in situ bromine-iodine transformation reversible-deactivation radical polymerization system without the use of NIR dyes and expensive catalysts. In this system, alkyl iodide ethyl α-iodophenylacetate (EIPA) initiator is generated in situ by the nucleophilic substitution reaction between an alkyl bromide compound ethyl α-bromophenylacetate and sodium iodide (NaI). At the same time, excessive NaI is also acted as a highly active catalyst by forming halogen bonds with terminal iodine of the polymer chains in this system to make it capable of precisely synthesizing polymethacrylates with narrow dispersities (Đ = 1.03-1.10). In addition, the strong penetration ability of NIR LED light is illustrated by the successful polymerization even through 11 pieces of A4 paper.
Collapse
Affiliation(s)
- Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haihui Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun Tian
- Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, Zhejiang, 315201, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Marien YW, Edeleva M, Figueira FL, Arraez FJ, Van Steenberge PHM, D'hooge DR. Translating Simulated Chain Length and Molar Mass Distributions in Chain‐Growth Polymerization for Experimental Comparison and Mechanistic Insight. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yoshi W. Marien
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Freddy L. Figueira
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | - Francisco J. Arraez
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Gent B‐9052 Belgium
- Centre for Textile Science and Engineering Ghent University Technologiepark 70a Gent B‐9052 Belgium
| |
Collapse
|
4
|
Li TT, Feng LF, Gu XP, Zhang CL, Wang P, Hu GH. Intensification of Polymerization Processes by Reactive Extrusion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian-Tian Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lian-Fang Feng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Xue-Ping Gu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Cai-Liang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Pan Wang
- CNRS-Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP, CNRS UMR 7274), 1 rue Grandville, BP 20451, Nancy, 54001, France
| | - Guo-Hua Hu
- CNRS-Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP, CNRS UMR 7274), 1 rue Grandville, BP 20451, Nancy, 54001, France
| |
Collapse
|
5
|
Liu J, Wang T, Luo Z, Zhou Y. In silico
mechanically mediated atom transfer radical polymerization: A detailed kinetic study. AIChE J 2021. [DOI: 10.1002/aic.17151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P.R. China
| | - Tian‐Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P.R. China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P.R. China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P.R. China
| |
Collapse
|
6
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|