1
|
Kitsiou M, Wantock T, Sandison G, Harle T, Gutierrez-Merino J, Klymenko OV, Karatzas KA, Velliou E. Determination of the combined effect of grape seed extract and cold atmospheric plasma on foodborne pathogens and their environmental stress knockout mutants. Appl Environ Microbiol 2024; 90:e0017724. [PMID: 39254318 PMCID: PMC11497776 DOI: 10.1128/aem.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The study aimed to explore the antimicrobial efficacy of grape seed extract (GSE) and cold atmospheric plasma (CAP) individually or in combination against L. monocytogenes and E. coli wild type (WT) and their isogenic mutants in environmental stress genes. More specifically, we examined the effects of 1% (wt/vol) GSE, 4 min of CAP treatment, and their combined effect on L. monocytogenes 10403S WT and its isogenic mutants ΔsigB, ΔgadD1, ΔgadD2, ΔgadD3, as well as E. coli K12 and its isogenic mutants ΔrpoS, ΔoxyR, and ΔdnaK. In addition, the sequence of the combined treatments was tested. A synergistic effect was achieved for all L. monocytogenes strains when exposure to GSE was followed by CAP treatment. However, the same effect was observed against E. coli strains, only for the reversed treatment sequence. Additionally, L. monocytogenes ΔsigB was more sensitive to the individual GSE and the combined GSE/CAP treatment, whereas ΔgadD2 was more sensitive to CAP, as compared to the rest of the mutants under study. Individual GSE exposure was unable to inhibit E. coli strains, and individual CAP treatment resulted in higher inactivation of E. coli in comparison to L. monocytogenes with the strain ΔrpoS appearing the most sensitive among all studied strains. Our findings provide a step toward a better understanding of the mechanisms playing a role in the tolerance/sensitivity of our model Gram-positive and Gram-negative bacteria toward GSE, CAP, and their combination. Therefore, our results contribute to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.IMPORTANCEAlternative approaches to conventional sterilization are gaining interest from the food industry, driven by (i) the consumer demand for minimally processed products and (ii) the need for sustainable, environmentally friendly processing interventions. However, as such alternative approaches are milder than conventional heat sterilization, bacterial pathogens might not be entirely killed by them, which means that they could survive and grow, causing food contamination and health hazards. In this manuscript, we performed a systematic study of the impact of antimicrobials derived from fruit industry waste (grape seed extract) and cold atmospheric plasma on the inactivation/killing as well as the damage of bacterial pathogens and their genetically modified counterparts, for genes linked to the response to environmental stress. Our work provides insights into genes that could be responsible for the bacterial capability to resist/survive those novel treatments, therefore, contributing to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.
Collapse
Affiliation(s)
- Melina Kitsiou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Thomas Wantock
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | - Gavin Sandison
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | - Thomas Harle
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | | | - Oleksiy V. Klymenko
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
| | - Kimon Andreas Karatzas
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Eirini Velliou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
2
|
Purk L, Kitsiou M, Ioannou C, El Kadri H, Costello KM, Gutierrez Merino J, Klymenko O, Velliou EG. Unravelling the impact of fat content on the microbial dynamics and spatial distribution of foodborne bacteria in tri-phasic viscoelastic 3D models. Sci Rep 2023; 13:21811. [PMID: 38071223 PMCID: PMC10710490 DOI: 10.1038/s41598-023-48968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.
Collapse
Affiliation(s)
- Lisa Purk
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Melina Kitsiou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Christina Ioannou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Oleksiy Klymenko
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK.
| |
Collapse
|
3
|
Studying the effect of oxygen availability and matrix structure on population density and inter-strain interactions of Listeria monocytogenes in different dairy model systems. Food Res Int 2022; 156:111118. [DOI: 10.1016/j.foodres.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
|
4
|
Qiao S, Duan W, Yu J, Zheng Y, Yan D, Jin F, Zhang S, Zhang Z, Chen H, Huang H, Chen Y. Fabrication of Biomolecule-Covalent-Organic-Framework Composites as Responsive Platforms for Smart Regulation of Fermentation Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32058-32066. [PMID: 34197071 DOI: 10.1021/acsami.1c02120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploration of novel material platforms to protect biological preservatives and realize intelligent regulation during fermentation is of great significance in industry. Herein, we established an intelligent responsive platform by introducing antimicrobial biomolecules (nisin) into rationally designed covalent organic frameworks (COFs), resulting in a new type of "smart formulation", which could responsively inhibit microbial contamination and ensure the orderly progression of the fermentation process. The encapsulated biomolecules retained their activity while exhibiting enhanced stability and pH-responsive releasing process (100% bacteriostatic efficiency at a pH of 3), which can ingeniously adapt to the environmental variation during the fermentation process and smartly fulfill the regulation needs. Moreover, the nisin@COF composites would not affect the fermentation strains. This study will pave a new avenue for the preparation of highly efficient and intelligent antimicrobial agents for the regulation of the fermentation process and play valuable roles in the drive toward green and sustainable biomanufacturing.
Collapse
Affiliation(s)
- Shan Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wenjie Duan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiangyue Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Dong Yan
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fazheng Jin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sainan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haixin Chen
- Department of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
- National Institute for Advanced Materials, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Combined Antimicrobial Effect of Bio-Waste Olive Leaf Extract and Remote Cold Atmospheric Plasma Effluent. Molecules 2021; 26:molecules26071890. [PMID: 33810520 PMCID: PMC8037246 DOI: 10.3390/molecules26071890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Abstract
A novel strategy involving Olive Leaf Extract (OLE) and Cold Atmospheric Plasma (CAP) was developed as a green antimicrobial treatment. Specifically, we reported a preliminary investigation on the combined use of OLE + CAP against three pathogens, chosen to represent medical and food industries (i.e., E. coli, S. aureus and L. innocua). The results indicated that a concentration of 100 mg/mL (total polyphenols) in OLE can exert an antimicrobial activity, but still insufficient for a total bacterial inactivation. By using plain OLE, we significantly reduced the growth of Gram positive S. aureus and L. innocua, but not Gram-negative E. coli. Instead, we demonstrated a remarkable decontamination effect of OLE + CAP in E. coli, S. aureus and L. innocua samples after 6 h. This effect was optimally maintained up to 24 h in S. aureus strain. E. coli and L. innocua grew again in 24 h. In the latter strain, OLE alone was most effective to significantly reduce bacterial growth. By further adjusting the parameters of OLE + CAP technology, e.g., OLE amount and CAP exposure, it could be possible to prolong the initial powerful decontamination over a longer time. Since OLE derives from a bio-waste and CAP is a non-thermal technology based on ionized air, we propose OLE + CAP as a potential green platform for bacterial decontamination. As a combination, OLE and CAP can lead to better antimicrobial activity than individually and may replace or complement conventional thermal procedures in food and biomedical industries.
Collapse
|
6
|
The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2020; 337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Ghent, Belgium
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
8
|
Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|