1
|
Lessons from a Single Amino Acid Substitution: Anticancer and Antibacterial Properties of Two Phospholipase A2-Derived Peptides. Curr Issues Mol Biol 2021; 44:46-62. [PMID: 35723383 PMCID: PMC8929095 DOI: 10.3390/cimb44010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The membrane-active nature of phospholipase A2-derived peptides makes them potential candidates for antineoplastic and antibacterial therapies. Two short 13-mer C-terminal fragments taken from snake venom Lys49-PLA2 toxins (p-AppK and p-Acl), differing by a leucine/phenylalanine substitution, were synthesized and their bioactivity was evaluated. Their capacity to interfere with the survival of Gram-positive and Gram-negative bacteria as well as with solid and liquid tumors was assessed in vitro. Toxicity to red blood cells was investigated via in silico and in vitro techniques. The mode of action was mainly studied by molecular dynamics simulations and membrane permeabilization assays. Briefly, both peptides have dual activity, i.e., they act against both bacteria, including multidrug-resistant strains and tumor cells. All tested bacteria were susceptible to both peptides, Pseudomonas aeruginosa being the most affected. RAMOS, K562, NB4, and CEM cells were the main leukemic targets of the peptides. In general, p-Acl showed more significant activity, suggesting that phenylalanine confers advantages to the antibacterial and antitumor mechanism, particularly for osteosarcoma lines (HOS and MG63). Peptide-based treatment increased the uptake of a DNA-intercalating dye by bacteria, suggesting membrane damage. Indeed, p-AppK and p-Acl did not disrupt erythrocyte membranes, in agreement with in silico predictions. The latter revealed that the peptides deform the membrane and increase its permeability by facilitating solvent penetration. This phenomenon is expected to catalyze the permeation of solutes that otherwise could not cross the hydrophobic membrane core. In conclusion, the present study highlights the role of a single amino acid substitution present in natural sequences towards the development of dual-action agents. In other words, dissecting and fine-tuning biomembrane remodeling proteins, such as snake venom phospholipase A2 isoforms, is again demonstrated as a valuable source of therapeutic peptides.
Collapse
|
2
|
Devillers E, Chelain E, Dalvit C, Brigaud T, Pytkowicz J. (R)-α-Trifluoromethylalanine as a 19 F NMR Probe for the Monitoring of Protease Digestion of Peptides. Chembiochem 2021; 23:e202100470. [PMID: 34738292 DOI: 10.1002/cbic.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Fluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in 19 F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
Collapse
Affiliation(s)
- Emmanuelle Devillers
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Evelyne Chelain
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Claudio Dalvit
- Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.,Present address: Lavis, Trento, Italy
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Julien Pytkowicz
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
3
|
Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021; 167:140-158. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
The past decades witnessed an increasing interest in peptides as clinical therapeutics. Rightfully considered as a potential alternative for small molecule therapy, these remarkable pharmaceuticals can be structurally fine-tuned to impact properties such as high target affinity, selectivity, low immunogenicity along with satisfactory tissue penetration. Although physicochemical and pharmacokinetic challenges have mitigated, to some extent, the clinical applications of therapeutic peptides, their potential impact on modern healthcare remains encouraging. According to recent reports, there are more than 400 peptides under clinical trials and 60 were already approved for clinical use. As the demand for efficient and safer therapy became high, especially for cancers, peptides have shown some exciting developments not only due to their potent antiproliferative action but also when used as adjuvant therapies, either to decrease side effects with tumor-targeted therapy or to enhance the activity of anticancer drugs via transbarrier delivery. The first part of the present review gives an insight into challenges related to peptide product development. Both molecular and formulation approaches intended to optimize peptide's pharmaceutical properties are covered, and some of their current issues are highlighted. The second part offers a comprehensive overview of the emerging applications of therapeutic peptides in chemotherapy from bioconjugates to nanovectorized therapeutics.
Collapse
Affiliation(s)
- Ange B Ilangala
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| |
Collapse
|
4
|
Karbalaei-Heidari HR, Budisa N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front Microbiol 2020; 11:590522. [PMID: 33250877 PMCID: PMC7674664 DOI: 10.3389/fmicb.2020.590522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Due to the rapid emergence of multi-resistant bacterial strains in recent decades, the commercially available effective antibiotics are becoming increasingly limited. On the other hand, widespread antimicrobial peptides (AMPs) such as the lantibiotic nisin has been used worldwide for more than 40 years without the appearance of significant bacterial resistance. Lantibiotics are ribosomally synthesized antimicrobials generated by posttranslational modifications. Their biotechnological production is of particular interest to redesign natural scaffolds improving their pharmaceutical properties, which has great potential for therapeutic use in human medicine and other areas. However, conventional protein engineering methods are limited to 20 canonical amino acids prescribed by the genetic code. Therefore, the expansion of the genetic code as the most advanced approach in Synthetic Biology allows the addition of new amino acid building blocks (non-canonical amino acids, ncAAs) during protein translation. We now have solid proof-of-principle evidence that bioexpression with these novel building blocks enabled lantibiotics with chemical properties transcending those produced by natural evolution. The unique scaffolds with novel structural and functional properties are the result of this bioengineering. Here we will critically examine and evaluate the use of the expanded genetic code and its alternatives in lantibiotics research over the last 7 years. We anticipate that Synthetic Biology, using engineered lantibiotics and even more complex scaffolds will be a promising tool to address an urgent problem of antibiotic resistance, especially in a class of multi-drug resistant microbes known as superbugs.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Kumar A, Alhassan M, Lopez J, Albericio F, de la Torre BG. N-Butylpyrrolidinone for Solid-Phase Peptide Synthesis is Environmentally Friendlier and Synthetically Better than DMF. CHEMSUSCHEM 2020; 13:5288-5294. [PMID: 32720474 DOI: 10.1002/cssc.202001647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Solid-phase peptide synthesis (SPPS) is the method of choice for the preparation of peptides in both laboratory scale and large production. Although the methodology has been improved during the last decades allowing the achievement of long peptides and challenging sequences in good yields and purities, the process was not revised from an environmental point of view. One of the main problems in this regard is the large amount of solvents used, and therefore the tons of generated waste. Moreover, the solvent of choice for the SPPS is N,N-dimethylformamide (DMF), which is considered as reprotoxic; thus, there is an urgent necessity to replace it with safer solvents. The DMF substitution by a green solvent is not a trivial task, because it should solubilize all the reagents and byproducts involved in the process, and, in addition to facilitating the coupling of the different amino acids, it should not favor the formation of side-reactions compared with DMF. Herein, it was demonstrated that the use of the green solvent N-butylpyrrolidinone (NBP) as a replacement of DMF was beneficial in two well-documented side reactions in peptide synthesis, racemization and aspartimide formation. The use of NBP rendered a lower or equal level of racemization in the amino acids more prone to this side reaction than DMF, whilst the aspartimide formation was clearly lower when NBP was used as solvent. Our findings demonstrate that the use of a green solvent does not hamper the synthetic process and could even improve it, making it environmentally friendlier and synthetically better.
Collapse
Affiliation(s)
- Ashish Kumar
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Mahama Alhassan
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - John Lopez
- Novartis Pharma AG, Lichtstrasse 35, 4056, Basel, Switzerland
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine & Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
7
|
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5474-5499. [DOI: 10.1021/acsabm.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bhavinkumar Gayakvad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Jyoti Rani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|