1
|
Wagner EK, Carter KP, Lim YW, Chau GJ, Enstrom A, Wayham NP, Hanners JM, Yeh CLC, Fouet M, Leong J, Adler AS, Simons JF. High-throughput specificity profiling of antibody libraries using ribosome display and microfluidics. CELL REPORTS METHODS 2024; 4:100934. [PMID: 39689695 DOI: 10.1016/j.crmeth.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
In this work, we developed PolyMap (polyclonal mapping), a high-throughput method for mapping protein-protein interactions. We demonstrated the mapping of thousands of antigen-antibody interactions between diverse antibody libraries isolated from convalescent and vaccinated COVID-19 donors and a set of clinically relevant SARS-CoV-2 spike variants. We identified over 150 antibodies with a variety of distinctive binding patterns toward the antigen variants and found a broader binding profile, including targeting of the Omicron variant, in the antibody repertoires of more recent donors. We then used these data to select mixtures of a small number of clones with complementary reactivity that together provide strong potency and broad neutralization. PolyMap is a generalizable platform that can be used for one-pot epitope mapping, immune repertoire profiling, and therapeutic design and, in the future, could be expanded to other families of interacting proteins.
Collapse
Affiliation(s)
| | - Kyle P Carter
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | | | | | | | | | | | | | - Marc Fouet
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | - Jackson Leong
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | - Adam S Adler
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | | |
Collapse
|
2
|
Krohl PJ, Fine J, Yang H, VanDyke D, Ang Z, Kim KB, Thomas-Tikhonenko A, Spangler JB. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. CELL REPORTS METHODS 2023; 3:100429. [PMID: 37056366 PMCID: PMC10088246 DOI: 10.1016/j.crmeth.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023]
Abstract
Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.
Collapse
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Justyn Fine
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Lei M, Trivedi VD, Nair NU, Lee K, Van Deventer JA. Flow cytometric evaluation of yeast-bacterial cell-cell interactions. Biotechnol Bioeng 2023; 120:399-408. [PMID: 36259110 PMCID: PMC10072783 DOI: 10.1002/bit.28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023]
Abstract
Synthetic cell-cell interaction systems can be useful for understanding multicellular communities or for screening binding molecules. We adapt a previously characterized set of synthetic cognate nanobody-antigen pairs to a yeast-bacteria coincubation format and use flow cytometry to evaluate cell-cell interactions mediated by binding between surface-displayed molecules. We further use fluorescence-activated cell sorting to enrich a specific yeast-displayed nanobody within a mixed yeast-display population. Finally, we demonstrate that this system supports the characterization of a therapeutically relevant nanobody-antigen interaction: a previously discovered nanobody that binds to the intimin protein expressed on the surface of enterohemorrhagic Escherichia coli. Overall, our findings indicate that the yeast-bacteria format supports efficient evaluation of ligand-target interactions. With further development, this format may facilitate systematic characterization and high-throughput discovery of bacterial surface-binding molecules.
Collapse
Affiliation(s)
- Ming Lei
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| | - Vikas D. Trivedi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| | - Nikhil U. Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
| | - James A. Van Deventer
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
4
|
Panton RA, Stern LA. Ligand Selection by Combination of Recombinant and Cell Panning Selection Techniques. Methods Mol Biol 2022; 2491:217-233. [PMID: 35482193 DOI: 10.1007/978-1-0716-2285-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-throughput protein selection methods are a cornerstone for protein engineering and pharmaceutical development. Traditional high-throughput selection strategies rely largely on recombinant antigen to generate target specificity. Though effective, this selection strategy can be limited by soluble target quality, particularly in the case of recombinant extracellular domains of transmembrane proteins. Recent advances in cell-based selection techniques provide new opportunities for improving the outcomes of ligand selection campaigns but can introduce technical challenges in maintaining antigen specificity due to the heterogeneity of biomacromolecule expression on the mammalian cell surface. Here, we describe a combination technique using recombinant antigen to "train" library target specificity followed by cell panning selections to ensure that isolated ligands bind cell-expressed target, as well as a facile microscopy technique for assessing target specificity on a clonal basis without the need to produce soluble ligand.
Collapse
Affiliation(s)
- Rojhae A Panton
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Lawrence A Stern
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Krohl PJ, Spangler JB. A Hybrid Adherent/Suspension Cell-Based Selection Strategy for Discovery of Antibodies Targeting Membrane Proteins. Methods Mol Biol 2022; 2491:195-216. [PMID: 35482192 PMCID: PMC9667817 DOI: 10.1007/978-1-0716-2285-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane proteins are favored drug targets and antibody therapeutics represent the fastest-growing category of pharmaceuticals. However, there remains a need for rapid and effective approaches for the discovery of antibodies that recognize membrane proteins to develop a robust clinical pipeline for targeted therapeutics. The challenges associated with recombinant expression of membrane proteins make whole cell screening techniques desirable, as these strategies allow presentation of the target membrane proteins in their native conformations. Here, we describe a workflow that employs both adherent cell-based and suspension cell-based whole cell panning methodologies to enrich for specific binders within a yeast-displayed antibody library. The first round of selection consists of an adherent cell-based approach, wherein a diverse library is panned over target-expressing mammalian cell monolayers in order to debulk the naïve library. Subsequent rounds involve the use of suspension cell-based approaches, facilitated with magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS), to achieve further library enrichment. Finally, we describe a high-throughput approach to screen target binding and specificity of individual clones isolated from selection campaigns.
Collapse
Affiliation(s)
- Patrick J Krohl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Lown PS, Cai JJ, Ritter SC, Otolski JJ, Wong R, Hackel BJ. Extended yeast surface display linkers enhance the enrichment of ligands in direct mammalian cell selections. Protein Eng Des Sel 2021; 34:gzab004. [PMID: 33880560 PMCID: PMC8058008 DOI: 10.1093/protein/gzab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Selections of yeast-displayed ligands on mammalian cell monolayers benefit from high target expression and nanomolar affinity, which are not always available. Prior work extending the yeast-protein linker from 40 to 80 amino acids improved yield and enrichment but is hypothesized to be below the optimal length, prompting evaluation of an extended amino acid linker. A 641-residue linker provided enhanced enrichment with a 2-nM affinity fibronectin ligand and 105 epidermal growth factor receptors (EGFR) per cell (14 ± 2 vs. 8 ± 1, P = 0.008) and a >600-nM affinity ligand, 106 EGFR per cell system (23 ± 7 vs. 0.8 ± 0.2, P = 0.004). Enhanced enrichment was also observed with a 310-nM affinity affibody ligand and 104 CD276 per cell, suggesting a generalizable benefit to other scaffolds and targets. Spatial modeling of the linker suggests that improved extracellular accessibility of ligand enables the observed enrichment under conditions not previously possible.
Collapse
Affiliation(s)
- Patrick S Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Jessy J Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Seth C Ritter
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Jacob J Otolski
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Ryan Wong
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|