1
|
Wang C, Su J, Lan H, Wang C, Zeng Y, Chen R, Jin T. Preparation of the N, P-Codoped Carbonized UiO-66 Nanocomposite and Its Application in Supercapacitors. ACS OMEGA 2023; 8:44689-44697. [PMID: 38046337 PMCID: PMC10688160 DOI: 10.1021/acsomega.3c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 12/05/2023]
Abstract
Preparing high-performance electrode materials from metal-organic framework precursors is currently a hot research topic in the field of energy storage materials. Improving the conductivity of such electrode materials and further increasing their specific capacitance are key issues that must be addressed. In this work, we prepared phosphoric acid-functionalized UiO-66 material as a precursor for carbonization, and after carbonization, it was combined with activated carbon to obtain nitrogen-/phosphorus-codoped carbonized UiO-66 composite material (N/P-C-UiO-66@AC). This material exhibits excellent conductivity. In addition, the carbonized product ZrO2 and the nitrogen-/phosphorus-codoped structure evidently improve the pseudocapacitance of the material. Electrochemical test results show that the material has a good electrochemical performance. The specific capacitance of the supercapacitor made from this material at 1.0 A/g is 140 F/g. After 5000 charge-discharge cycles at 10 A/g, its specific capacitance still remains at 88.5%, indicating that the composite material has good cycling stability. The symmetric supercapacitor assembled with this electrode material also has a high energy density of 11.0 W h/kg and a power density of 600 W/kg.
Collapse
Affiliation(s)
- Chunyan Wang
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Jingwei Su
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Haiyan Lan
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Chongshi Wang
- College
of Engineering, Department of Civil, Architectural & Environmental
Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Yi Zeng
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Rong Chen
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Tianxiang Jin
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| |
Collapse
|
2
|
Zhang P, Tu Z, Yan Z, Zhang X, Hu X, Wu Y. Deep eutectic solvent-based blended membranes for ultra-super selective separation of SO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132515. [PMID: 37703738 DOI: 10.1016/j.jhazmat.2023.132515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
SO2 is a major atmospheric pollutant leading to acid rain and smog. As a new generation of green solvents, deep eutectic solvents (DESs) have been widely investigated for gas capture. Nevertheless, studies on DES-based membranes for SO2 separation are yet minimal. Herein, we devised polymer/DES blended membranes comprising 1-butyl-3-methyl-imidazolium bromide ([Bmim]Br)/diethylene glycol (DEG) DES and poly (vinylidene fluoride) (PVDF), and these membranes were firstly used for selective separation of SO2 from N2 and CO2. The permeability of SO2 reaches up to 17480 Barrer (0.20 bar, 40 ºC) in PVDF/DES blended membrane containing 50 wt% of [Bmim]Br/DEG (2:1), with ultrahigh SO2/N2 and SO2/CO2 selectivity of 3690 and 211 obtained, respectively, far exceeding those in the state-of-the-art membranes reported in literature. The highly-reversible multi-site interaction between SO2 and [Bmim]Br/DEG DES was revealed by spectroscopic analysis. Furthermore, the PVDF/DES blended membrane was also able to efficiently and stably separate SO2/CO2/N2 (2.5/15/82.5%) mixed gas for at least 100 h. This work demonstrates for the first time that [Bmim]Br-based DESs are very efficient media for membrane separation of SO2. The easy preparation, low cost and high performance enable polymer/DES blended membranes to be promising candidates for flue gas desulfurization.
Collapse
Affiliation(s)
- Ping Zhang
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zhuoheng Tu
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Zhihao Yan
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaomin Zhang
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Institute of Green Chemistry and Engineering, Nanjing University, Suzhou 215163, PR China
| | - Xingbang Hu
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Institute of Green Chemistry and Engineering, Nanjing University, Suzhou 215163, PR China
| | - Youting Wu
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Zhu SX, Li ZM, Gong WQ, Gao ZT, Guan H, Sun MS, Zhou Y, Tao DJ. Equimolar CO Capture by Cuprous-Based Quaternary Deep Eutectic Solvents. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shu-Xian Zhu
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Zhang-Min Li
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Wen-Qiang Gong
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Zi-Teng Gao
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Hua Guan
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Ming-Shuai Sun
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Yan Zhou
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| | - Duan-Jian Tao
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, China
| |
Collapse
|
4
|
Efficient absorption and thermodynamic modeling of nitric oxide by low viscous DBU-based N-heterocyclic deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|