1
|
Xu X, Tao S, Huang L, Du J, Liu C, Jiang Y, Jiang T, Lv H, Lu Q, Meng Q, Wang X, Qin R, Liu C, Ma H, Jin G, Xia Y, Kan H, Lin Y, Shen R, Hu Z. Maternal PM 2.5 exposure during gestation and offspring neurodevelopment: Findings from a prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156778. [PMID: 35724775 DOI: 10.1016/j.scitotenv.2022.156778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Emerging data have suggested the potential role of prenatal PM2.5 exposure as a neurotoxin for offspring. However, the existing results are equivocal, and no study has examined the effects of complex chemical constituents of the particular matter on offspring neurodevelopment. Therefore, in a prospective birth cohort study conducted in Jiangsu, China, we aimed to investigate the association between prenatal exposure to PM2.5 and the neurodevelopment in infants, and further assess the effects of specific chemical constituents of PM2.5. A total of 1531 children who had available data on daily prenatal PM2.5 exposure and completed assessment on neurodevelopment at 1 year old were enrolled. We used the high-performance machine-learning model to estimate daily PM2.5 exposure concentrations at 1 km × 1 km spatial resolution. The combined geospatial-statistical model was applied to evaluate average concentrations of six chemical constituents [organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and soil dust (Dust)]. The neurodevelopment of children was assessed using Bayley-III Screening Test. After adjusting for confounding factors, the risk of non-optimal gross motor development increased by 31 % for every 10 μg/m3 increase in average PM2.5 exposure during gestation (aRR: 1.31; 95 % CI: 1.04, 1.64). Further analysis of PM2.5 constituents showed that prenatally exposed to high SO42- was associated with the risk of non-optimal gross motor development (aRR: 1.40; 95 % CI: 1.08, 1.81). Null associations were observed for the rest four neurodevelopment domains. Collectively, our study suggested that prenatal exposure to PM2.5, particularly with high SO42- concentration, was associated with children's non-optimal gross motor development at 1 year old. The short- and long-term influences of perinatal PM2.5 exposure on children's neurodevelopment warrant further investigation.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China; Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiaoyan Wang
- Department of Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.
| | - Rong Shen
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.
| |
Collapse
|
4
|
Borsani E, Della Vedova AM, Rezzani R, Rodella LF, Cristini C. Correlation between human nervous system development and acquisition of fetal skills: An overview. Brain Dev 2019; 41:225-233. [PMID: 30389271 DOI: 10.1016/j.braindev.2018.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
Abstract
Understanding the association between fetal nervous system structure and functioning should be an important goal in neurodevelopmental sciences, especially when considering the emerging knowledge regarding the importance of prenatal onset. Intrauterine development of the human central nervous system consists of specific processes: neurogenesis, neuronal migration, synaptogenesis, and myelination. However, as extensively shown by the neurobehavioral studies in the last century, the development of the central nervous system involves both structure and functioning. It is now recognised that the developing motor and sensory systems are able to function long before they have completed their neural maturation and that the intrauterine experience contributes to neurobehavioral development. This review analyzes the recent literature, looking at the association between the human nervous system maturation and fetal behavior. This article will follow the development and skill acquisition of the anatomical nervous system across the three trimesters of the gestation period.
Collapse
Affiliation(s)
- Elisa Borsani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Anna Maria Della Vedova
- Department of Clinical and Experimental Sciences, Division of Neurosciences, Unit of General Psychology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Carlo Cristini
- Department of Clinical and Experimental Sciences, Division of Neurosciences, Unit of General Psychology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
6
|
Reynoso C, Crespo-Eguílaz N, Alcázar JL, Narbona J. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study]. An Pediatr (Barc) 2014; 82:183-91. [PMID: 25001373 DOI: 10.1016/j.anpedi.2014.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/08/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). METHODS A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. RESULTS All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. CONCLUSIONS All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy.
Collapse
Affiliation(s)
- C Reynoso
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Navarra, España; Centro Médico ABC, México DF, México
| | - N Crespo-Eguílaz
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J L Alcázar
- Departamento de Obstetricia y Ginecología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J Narbona
- Unidad de Neurología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Navarra, España.
| |
Collapse
|