1
|
Crépeault O, Otis C, Pombert JF, Turmel M, Lemieux C. Comparative plastome and mitogenome analyses indicate that the marine prasinophyte green algae Pycnococcus provasolii and Pseudoscourfieldia marina (Pseudoscourfieldiophyceae class nov., Chlorophyta) represent morphotypes of the same species. JOURNAL OF PHYCOLOGY 2024; 60:1021-1027. [PMID: 38989846 DOI: 10.1111/jpy.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The marine prasinophyte green algae Pycnococcus provasolii and Pseudoscourfieldia marina represent the only extant genera and known species of the Pycnococcaceae. However, their taxonomic status needs to be reassessed, owing to the very close relationship inferred from previous sequence comparisons of individual genes. Although Py. provasolii and Ps. marina are morphologically different, their plastid rbcL and nuclear small subunit rRNA genes were observed to be nearly or entirely identical in sequence, thus leading to the hypothesis that they represent distinct growth forms or alternate life-cycle stages of the same organism. To evaluate this hypothesis, we used organelle genomes as molecular markers. The plastome and mitogenome of Ps. marina UIO 007 were sequenced and compared with those available for two isolates of Py. provasolii (CCMP 1203 and CCAP 190/2). The Ps. marina organelle genomes proved to be almost identical in size and had the same gene content and gene order as their Py. provasolii counterparts. Single nucleotide substitutions and insertions/deletions were localized using genome-scale sequence alignments. Over 99.70% sequence identities were observed in all pairwise comparisons of plastomes and mitogenomes. Alignments of both organelle genomes revealed that Ps. marina UIO 007 is closer to Py. provasolii CCAP 190/2 than are the two Py. provasolii strains to one another. Therefore, our results are not consistent with the placement of Ps. marina and Py. provasolii strains into distinct genera. We propose a taxonomic revision of the Pycnococcaceae and the erection of a new class of Chlorophyta, the Pseudoscourfieldiophyceae.
Collapse
Affiliation(s)
- Olivier Crépeault
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et Des Systèmes, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et Des Systèmes, Université Laval, Québec, Québec, Canada
| | | | - Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et Des Systèmes, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et Des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
2
|
Raman G, Choi KS, Lee EM, Morden CW, Shim H, Kang JS, Yang TJ, Park S. Extensive characterization of 28 complete chloroplast genomes of Hydrangea species: A perspective view of their organization and phylogenetic and evolutionary relationships. Comput Struct Biotechnol J 2023; 21:5073-5091. [PMID: 37867966 PMCID: PMC10589384 DOI: 10.1016/j.csbj.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
The tribe Hydrangeeae displays a unique, distinctive disjunct distribution encompassing East Asia, North America and Hawaii. Despite its complex trait variations and polyphyletic nature, comprehensive phylogenomic and biogeographical studies on this tribe have been lacking. To address this gap, we sequenced and characterized 28 plastomes of Hydrangeeae. Our study highlights the highly conserved nature of Hydrangeaceae chloroplast (cp) genomes in terms of gene content and arrangement. Notably, synapomorphic characteristics of tandem repeats in the conserved domain of accD were observed in the Macrophyllae, Chinenses, and Dichroa sections within the Hydrangeeae tribe. Additionally, we found lower expression of accD in these sections using structure prediction and quantitative real-time PCR analysis. Phylogenomic analyses revealed the subdivision of the Hydrangeeae tribe into two clades with robust support values. Consistent with polyphyletic relationships, sect. Broussaisia was identified as the basal group in the tribe Hydrangeeae. Our study also provides insights into the phylogenetic relationships of Hydrangea petiolaris in the Jeju and Ulleung Island populations, suggesting the need for further studies with more samples and molecular data. Divergence time estimation and biogeographical analyses suggested that the common ancestors of the tribe Hydrangeeae likely originated from North America and East Asia during the Paleocene period via the Bering Land Bridge, potentially facilitating migration within the tribe between these regions. In conclusion, this study enhances our understanding of the evolutionary history and biogeography of the tribe Hydrangeeae, shedding light on the dispersal patterns and origins of this intriguing plant group with its unique disjunct distribution.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Kyoung-Su Choi
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Eun Mi Lee
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Clifford W. Morden
- School of Life Sciences, University of Hawai]i at Mānoa, Honolulu, HI, USA
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| |
Collapse
|
3
|
Lee C, Cooper JT, Moroni F, Salim AM, Lee C, Spanbauer T, Theriot EC. Complete plastome of Coelastrum microporum Nägeli (Scenedesmaceae, Sphaeropleales). Mitochondrial DNA B Resour 2023; 8:948-951. [PMID: 37701527 PMCID: PMC10494757 DOI: 10.1080/23802359.2023.2252941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
The genus Coelastrum Nägeli (Sphaeropleales; Scenedesmaceae) is a diverse genus of green algae with potential biotechnical applications. A sound understanding of its phylogeny will be a useful tool for predicting the distribution of traits that may enhance its utility, and may lead to a better understanding of its evolution and ecology. Here we present the plastome of Coelastrum microporum. Our exemplar was isolated from Gull Lake, Michigan and the complete plastome as assembled was 169,961 bp in length. The plastome contained 104 genes of which 68 were protein-coding genes (CDSs), 27 tRNA genes and three rRNA genes. The GC content of the plastome was 31.2%. The maximum likelihood phylogeny suggested that C. microporum was the sister group to a clade of single exemplars of three other genera in the Scenedesmaceae (Tetradesmus, Pectinodesmus and Coelastrella).
Collapse
Affiliation(s)
- Chanhee Lee
- Plant Biology Graduate Program, University of Texas at Austin, Austin, Texas, USA
| | - Joshua T. Cooper
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Francesca Moroni
- Plant Biology Graduate Program, University of Texas at Austin, Austin, Texas, USA
| | - Ana M. Salim
- Plant Biology Graduate Program, University of Texas at Austin, Austin, Texas, USA
| | - Chaehee Lee
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Trisha Spanbauer
- Department of Environmental Sciences and Lake Erie Center, University of Toledo, Toledo, Ohio, USA
| | - Edward C. Theriot
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Robison T, Nelson JM, Hauser DA, Lewis LA, Li FW. Dynamic plastid and mitochondrial genomes in Chaetopeltidales (Chlorophyceae) and characterization of a new chlorophyte taxon. AMERICAN JOURNAL OF BOTANY 2022; 109:939-951. [PMID: 35678538 DOI: 10.1002/ajb2.16015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Chaetopeltidales is a poorly characterized order in the Chlorophyceae, with only two plastid and no mitochondrial genomes published. Here we describe a new taxon in Chaetopeltidales, Gormaniella terricola gen. et sp. nov. and characterize both of its organellar genomes. METHODS Gormaniella terricola was inadvertently isolated from a surface-sterilized hornwort thallus. Light microscopy was used to characterize its vegetative morphology. Organellar genomes were assembled, annotated, and analyzed using a variety of software packages. RESULTS The mitochondrial genome (66,927 bp) represents the first complete mitochondrial genome published for Chaetopeltidales. The chloroplast genome, measuring 428,981 bp, is one of the largest plastid genomes published to date and shares this large size and an incredible number of short, dispersed repeats with the other sequenced chloroplast genomes in Chaetopeltidales. Despite these shared features, the chloroplast genomes of Chaetopeltidales appear to be highly rearranged when compared to one another, with numerous inversions, translocations, and duplications, suggesting a particularly dynamic chloroplast genome. Both the chloroplast and mitochondrial genomes of G. terricola contain a number of mobile group I and group II introns, which appear to have invaded separately. Three of the introns within the mitochondrial genome encode homing endonucleases that are phylogenetically nested within those found in fungi, rather than algae, suggesting a possible case of horizontal gene transfer. CONCLUSIONS These results help to shed light on a poorly understood group of algae and their unusual organellar genomes, raising additional questions about the unique patterns of genome evolution within Chaetopeltidales.
Collapse
Affiliation(s)
- Tanner Robison
- Plant Biology Section, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | | | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Fay-Wei Li
- Plant Biology Section, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| |
Collapse
|
5
|
Liu H, Zhao W, Hua W, Liu J. A large-scale population based organelle pan-genomes construction and phylogeny analysis reveal the genetic diversity and the evolutionary origins of chloroplast and mitochondrion in Brassica napus L. BMC Genomics 2022; 23:339. [PMID: 35501686 PMCID: PMC9063048 DOI: 10.1186/s12864-022-08573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Allotetraploid oilseed rape (Brassica napus L.) is an important worldwide oil-producing crop. The origin of rapeseed is still undetermined due to the lack of wild resources. Despite certain genetic architecture and phylogenetic studies have been done focus on large group of Brassica nuclear genomes, the organelle genomes information under global pattern is largely unknown, which provide unique material for phylogenetic studies of B. napus. Here, based on de novo assemblies of 1,579 B. napus accessions collected globally, we constructed the chloroplast and mitochondrial pan-genomes of B. napus, and investigated the genetic diversity, phylogenetic relationships of B. napus, B. rapa and B. oleracea. RESULTS Based on mitotype-specific markers and mitotype-variant ORFs, four main cytoplasmic haplotypes were identified in our groups corresponding the nap, pol, ole, and cam mitotypes, among which the structure of chloroplast genomes was more conserved without any rearrangement than mitochondrial genomes. A total of 2,092 variants were detected in chloroplast genomes, whereas only 326 in mitochondrial genomes, indicating that chloroplast genomes exhibited a higher level of single-base polymorphism than mitochondrial genomes. Based on whole-genome variants diversity analysis, eleven genetic difference regions among different cytoplasmic haplotypes were identified on chloroplast genomes. The phylogenetic tree incorporating accessions of the B. rapa, B. oleracea, natural and synthetic populations of B. napus revealed multiple origins of B. napus cytoplasm. The cam-type and pol-type were both derived from B. rapa, while the ole-type was originated from B. oleracea. Notably, the nap-type cytoplasm was identified in both the B. rapa population and the synthetic B. napus, suggesting that B. rapa might be the maternal ancestor of nap-type B. napus. CONCLUSIONS The phylogenetic results provide novel insights into the organelle genomic evolution of Brassica species. The natural rapeseeds contained at least four cytoplastic haplotypes, of which the predominant nap-type might be originated from B. rapa. Besides, the organelle pan-genomes and the overall variation data offered useful resources for analysis of cytoplasmic inheritance related agronomical important traits of rapeseed, which can substantially facilitate the cultivation and improvement of rapeseed varieties.
Collapse
Affiliation(s)
- Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Wei Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
6
|
Žihala D, Eliáš M. Evolution and Unprecedented Variants of the Mitochondrial Genetic Code in a Lineage of Green Algae. Genome Biol Evol 2020; 11:2992-3007. [PMID: 31617565 PMCID: PMC6821328 DOI: 10.1093/gbe/evz210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria of diverse eukaryotes have evolved various departures from the standard genetic code, but the breadth of possible modifications and their phylogenetic distribution are known only incompletely. Furthermore, it is possible that some codon reassignments in previously sequenced mitogenomes have been missed, resulting in inaccurate protein sequences in databases. Here we show, considering the distribution of codons at conserved amino acid positions in mitogenome-encoded proteins, that mitochondria of the green algal order Sphaeropleales exhibit a diversity of codon reassignments, including previously missed ones and some that are unprecedented in any translation system examined so far, necessitating redefinition of existing translation tables and creating at least seven new ones. We resolve a previous controversy concerning the meaning the UAG codon in Hydrodictyaceae, which beyond any doubt encodes alanine. We further demonstrate that AGG, sometimes together with AGA, encodes alanine instead of arginine in diverse sphaeroplealeans. Further newly detected changes include Arg-to-Met reassignment of the AGG codon and Arg-to-Leu reassignment of the CGG codon in particular species. Analysis of tRNAs specified by sphaeroplealean mitogenomes provides direct support for and molecular underpinning of the proposed reassignments. Furthermore, we point to unique mutations in the mitochondrial release factor mtRF1a that correlate with changes in the use of termination codons in Sphaeropleales, including the two independent stop-to-sense UAG reassignments, the reintroduction of UGA in some Scenedesmaceae, and the sense-to-stop reassignment of UCA widespread in the group. Codon disappearance seems to be the main drive of the dynamic evolution of the mitochondrial genetic code in Sphaeropleales.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
7
|
Goremykin V. A Novel Test for Absolute Fit of Evolutionary Models Provides a Means to Correctly Identify the Substitution Model and the Model Tree. Genome Biol Evol 2020; 11:2403-2419. [PMID: 31368483 PMCID: PMC6736042 DOI: 10.1093/gbe/evz167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
A novel test is described that visualizes the absolute model-data fit of the substitution and tree components of an evolutionary model. The test utilizes statistics based on counts of character state matches and mismatches in alignments of observed and simulated sequences. This comparison is used to assess model-data fit. In simulations conducted to evaluate the performance of the test, the test estimator was able to identify both the correct tree topology and substitution model under conditions where the Goldman-Cox test-which tests the fit of a substitution model to sequence data and is also based on comparing simulated replicates with observed data-showed high error rates. The novel test was found to identify the correct tree topology within a wide range of DNA substitution model misspecifications, indicating the high discriminatory power of the test. Use of this test provides a practical approach for assessing absolute model-data fit when testing phylogenetic hypotheses.
Collapse
Affiliation(s)
- Vadim Goremykin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trentino, Italy
| |
Collapse
|
8
|
Fu CN, Mo ZQ, Yang JB, Ge XJ, Li DZ, Xiang QY(J, Gao LM. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous. Mol Phylogenet Evol 2019; 140:106601. [DOI: 10.1016/j.ympev.2019.106601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
9
|
Proulex GCR, Lor B, Manoylov KM, Cahoon AB. The chloroplast and mitochondrial genomes of the green algae Pediastrum duplex isolated from Central Georgia (USA). Mitochondrial DNA B Resour 2019; 4:3070-3071. [PMID: 33365860 PMCID: PMC7706855 DOI: 10.1080/23802359.2019.1666666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A Pediastrum duplex (Chlorophyta) strain was isolated from a freshwater system in Milledgeville, Georgia and its chloroplast and mitochondrial genomes sequenced. The chloroplast genome was 199,241 bp with 136 genes and the mitochondrial 40,756 bp with 40 genes, both were circular. Comparison of the ‘Milledgeville’ plastome to other P. duplex isolates revealed a nearly identical sequence identity to archived genes and genomic fragments from the strain UTEX1364 which was isolated from Lake Machovo in 1962. These sequences provide chloroplast and mitochondrial genomes from a wild P. duplex isolate and provide more organelle genomes for a genus with cryptic phylogenetic relationships.
Collapse
Affiliation(s)
- Grayson C. R. Proulex
- Department of Natural Sciences, The University of Virginia’s College at Wise, Wise, VA, USA
| | - Blia Lor
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | - Kalina M. Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | - A. Bruce Cahoon
- Department of Natural Sciences, The University of Virginia’s College at Wise, Wise, VA, USA
| |
Collapse
|
10
|
Fučíková K, Lewis PO, Neupane S, Karol KG, Lewis LA. Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae. PeerJ 2019; 7:e6899. [PMID: 31143537 PMCID: PMC6525593 DOI: 10.7717/peerj.6899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions.
Collapse
Affiliation(s)
- Karolina Fučíková
- Department of Natural Sciences, Assumption College, Worcester, MA, United States of America
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Suman Neupane
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Kenneth G Karol
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY, United States of America
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
11
|
Sablok G, Amiryousefi A, He X, Hyvönen J, Poczai P. Sequencing the Plastid Genome of Giant Ragweed ( Ambrosia trifida, Asteraceae) From a Herbarium Specimen. FRONTIERS IN PLANT SCIENCE 2019; 10:218. [PMID: 30873197 PMCID: PMC6403193 DOI: 10.3389/fpls.2019.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
We report the first plastome sequence of giant ragweed (Ambrosia trifida); with this new genome information, we assessed the phylogeny of Asteraceae and the transcriptional profiling against glyphosate resistance in giant ragweed. Assembly and genic features show a normal angiosperm quadripartite plastome structure with no signatures of deviation in gene directionality. Comparative analysis revealed large inversions across the plastome of giant ragweed and the previously sequenced members of the plant family. Asteraceae plastid genomes contain two inversions of 22.8 and 3.3 kb; the former is located between trnS-GCU and trnG-UCC genes, and the latter between trnE-UUC and trnT-GGU genes. The plastid genome sequences of A. trifida and the related species, Ambrosia artemisiifolia, are identical in gene content and arrangement, but they differ in length. The phylogeny is well-resolved and congruent with previous hypotheses about the phylogenetic relationship of Asteraceae. Transcriptomic analysis revealed divergence in the relative expressions at the exonic and intronic levels, providing hints toward the ecological adaptation of the genus. Giant ragweed shows various levels of glyphosate resistance, with introns displaying higher expression patterns at resistant time points after the assumed herbicide treatment.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xiaolan He
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Soltis DE, Moore MJ, Sessa EB, Smith SA, Soltis PS. Using and navigating the plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:287-290. [PMID: 29702724 DOI: 10.1002/ajb2.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 05/24/2023]
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
| |
Collapse
|