1
|
Groff DB, Marmentini J, Gaglioti AL, Silva PRDA, Knob A. Endophytic fungi associated with Araucaria angustifolia (Bertol.) Kuntze. AN ACAD BRAS CIENC 2024; 96:e20230251. [PMID: 39292101 DOI: 10.1590/0001-3765202420230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
The diversity of endophytes and their ecological relationships with the endangered conifer Araucaria angustifolia (a critically endangered species) are unrevealed. This study aimed to characterize the diversity of endophytic fungi associated with A. angustifolia. To this end, we analyzed 90 fragments from five individuals collected from a mixed localized fragment in Guarapuava-PR, Brazil. The total DNA of 61 morphotypes was extracted and the Internal Transcribed Spacer (ITS) region was amplified and sequenced. The sequence analysis allowed the identification of 37 genera belonging to the phylum Ascomycota and the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes, divided into 11 orders and 13 families. Most of the isolated fungi belonged to the Sordariomycetes class (40%) and to the Xylaria genus (14%), while Eurotiomycetes was the minority class within the community. Our results reveal the high endophytic richness supporting the life cycle of A. angustifolia and reinforce the necessity for the conservation of this conifer, as many genetic resources can be lost owing to its irrational exploration.
Collapse
Affiliation(s)
- Danieli B Groff
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Jéssica Marmentini
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - André Luiz Gaglioti
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Paulo Roberto DA Silva
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Adriana Knob
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| |
Collapse
|
2
|
Majid M, Wani AH, Ganai BA. Evaluating the Biocontrol Efficacy and Antioxidant Potential of Phellinus caribaeo-quercicola-A First Report Dual-Action Endophyte From Inula racemosa Hook. F. J Basic Microbiol 2024; 64:e2400080. [PMID: 39031570 DOI: 10.1002/jobm.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Phellinus caribaeo-quercicola is a basidiomycetous fungus, isolated as an endophyte in this study from the healthy and symptomless leaves of Inula racemosa Hook. f., an important medicinal herb growing in Kashmir Himalaya. This study combines morphological, molecular and phylogenetic techniques to identify the fungal endophyte, using the ITS sequence of nrDNA. A detached leaf assay was conducted to assess the pathogenicity of the fungal endophyte suggesting its mutually symbiotic relationship with the host. The authors also investigated the antifungal potential of the isolated endophytic strain to ascertain its use as a biocontrol agent. The study shows that P. caribaeo-quercicola INL3-2 strain exhibits biocontrol activity against four key fungal phytopathogens that cause significant agronomic and economic losses: Aspergillus flavus, Aspergillus niger, Fusarium solani, and Fusarium oxysporum. Notably, P. caribaeo-quercicola INL3-2 strain is highly effective against A. flavus, with an inhibition percentage of 57.63%. In addition, this study investigates the antioxidant activity of P. caribaeo-quercicola INL3-2 strain crude extracts using ethyl acetate and methanol as solvents. The results showed that the methanolic fraction of P. caribaeo-quercicola exhibits potential as an antioxidant agent, with an IC50 value of 171.90 ± 1.15 µg/mL. This investigation is first of its kind and marks the initial report of this fungal basidiomycete, P. caribaeo-quercicola, as an endophyte associated with a medicinal plant. The findings of this study highlight the potential of P. caribaeo-quercicola INL3-2 strain as a dual-action agent with both biocontrol and antioxidant properties consistent with the medicinal properties of Inula racemosa. This endophytic fungus could be a promising source of natural compounds for use in agriculture, medicine, and beyond.
Collapse
Affiliation(s)
- Misbah Majid
- Section of Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul H Wani
- Section of Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bashir A Ganai
- Center of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
3
|
Faticov M, Abdelfattah A, Hambäck P, Roslin T, Tack AJM. Different spatial structure of plant-associated fungal communities above- and belowground. Ecol Evol 2023; 13:e10065. [PMID: 37223309 PMCID: PMC10200691 DOI: 10.1002/ece3.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Département de biologieUniversité de SherbrookeSherbrookeQuebecCanada
| | - Ahmed Abdelfattah
- Leibniz Institute of Agricultural Engineering and Bio‐economyPotsdamGermany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
4
|
Phylogenetic Analyses of Hydnobolites and New Species from China. J Fungi (Basel) 2022; 8:jof8121302. [PMID: 36547635 PMCID: PMC9784535 DOI: 10.3390/jof8121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hydnobolites is an ectomycorrhizal fungal genus with hypogeous ascomata in the family Pezizaceae (Pezizales). Molecular analyses of Hydnobolites using both single (ITS) and concatenated gene datasets (ITS-nLSU) showed a total of 223 sequences, including 92 newly gained sequences from Chinese specimens. Phylogenetic results based on these two datasets revealed seven distinct phylogenetic clades. Among them, the ITS phylogenetic tree confirmed the presence of at least 42 phylogenetic species in Hydnobolites. Combined the morphological observations with molecular analyses, five new species of Hydnobolites translucidus sp. nov., H. subrufus sp. nov., H. lini sp. nov., H. sichuanensis sp. nov. and H. tenuiperidius sp. nov., and one new record species of H. cerebriformis Tul., were illustrated from Southwest China. Macro- and micro-morphological analyses of ascomata revealed a few, but diagnostic differences between the H. cerebriformis complex, while the similarities of the ITS sequences ranged from 94.4 to 97.2% resulting in well-supported clades.
Collapse
|
5
|
Yang T, Tedersoo L, Soltis PS, Soltis DE, Sun M, Ma Y, Ni Y, Liu X, Fu X, Shi Y, Lin HY, Zhao YP, Fu C, Dai CC, Gilbert JA, Chu H. Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. SCIENCE CHINA LIFE SCIENCES 2022; 66:1134-1150. [PMID: 36462107 DOI: 10.1007/s11427-022-2174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022]
Abstract
Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, 50409, Estonia
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Miao Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Han-Yang Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210003, China
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Environmental factors and host genetic variation shape the fungal endophyte communities within needles of Scots pine (Pinus sylvestris). FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Healy RA, Arnold AE, Bonito G, Huang YL, Lemmond B, Pfister DH, Smith ME. Endophytism and endolichenism in Pezizomycetes: the exception or the rule? THE NEW PHYTOLOGIST 2022; 233:1974-1983. [PMID: 34839525 DOI: 10.1111/nph.17886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Rosanne A Healy
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yu-Ling Huang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biology, National Museum of Natural Science, Taichung, 404, Taiwan
| | - Benjamin Lemmond
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Farlow Herbarium, Harvard University, 22 Divinity Ave, Cambridge, MA, 02138-2020, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Geml J, Arnold AE, Semenova-Nelsen TA, Nouhra ER, Drechsler-Santos ER, Góes-Neto A, Morgado LN, Ódor P, Hegyi B, Grau O, Ibáñez A, Tedersoo L, Lutzoni F. Community dynamics of soil-borne fungal communities along elevation gradients in neotropical and paleotropical forests. Mol Ecol 2022; 31:2044-2060. [PMID: 35080063 DOI: 10.1111/mec.16368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Because of their steep gradients in abiotic and biotic factors, mountains offer an ideal setting to illuminate the mechanisms that underlie patterns of species distributions and community assembly. We compared the composition of taxonomically and functionally diverse fungal communities in soils along five elevational gradients in mountains of the Neo- and Paleotropics (northern Argentina, southern Brazil, Panama, Malaysian Borneo, and Papua New Guinea). Both richness and composition of soil fungal communities reflect environmental factors, particularly temperature and soil pH, with some shared patterns among neotropical and paleotropical regions. Community dynamics are characterized by replacement of species along elevation gradients, implying a relatively narrow elevation range for most fungi, which appears to be driven by contrasting environmental preferences among both functional and taxonomic groups. For functional groups dependent on symbioses with plants (especially ectomycorrhizal fungi), the distribution of host plants drives richness and community composition, resulting in important differences in elevational patterns between neotropical and paleotropical montane communities. The pronounced compositional and functional turnover along elevation gradients implies that tropical montane forest fungi will be sensitive to climate change, resulting in shifts in composition and functionality over time.
Collapse
Affiliation(s)
- József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, H-3300, Eger, Hungary.,Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, U.S.A
| | - Tatiana A Semenova-Nelsen
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands
| | - Eduardo R Nouhra
- Multidisciplinary Institute of Plant Biology (IMBIV), CONICET, FCEFyN, National University of Córdoba, Córdoba, Córdoba, Argentina
| | | | - Aristóteles Góes-Neto
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luis N Morgado
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Péter Ódor
- Institute of Ecology and Botany, Centre for Ecological Research, 2163, Vácrátót, Hungary
| | - Balázs Hegyi
- Research and Development Centre, Eszterházy Károly Catholic University, H-3300, Eger, Hungary.,Doctoral School of Earth Science and Department for Landscape Protection and Environmental Geography, University of Debrecen, H-4002, Debrecen, Hungary
| | - Oriol Grau
- CREAF, Global Ecology Unit, 08193, Cerdanyola del Vallès, Catalonia, Spain.,Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ. Antilles, Univ. Guyane), Campus Agronomique, Kourou, French Guiana.,Spanish National Research Council (CSIC), Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain
| | - Alicia Ibáñez
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, U.S.A
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 50411, Tartu, Estonia
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC, 27708, U.S.A
| |
Collapse
|
9
|
Bowman EA, Arnold AE. Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape. THE ISME JOURNAL 2021; 15:3437-3454. [PMID: 34099878 PMCID: PMC8630060 DOI: 10.1038/s41396-021-01006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/30/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Fungal communities associated with plants often decrease in similarity as the distance between sampling sites increases (i.e., they demonstrate distance decay). In the southwestern USA, forests occur in highlands separated from one another by warmer, drier biomes with plant and fungal communities that differ from those at higher elevations. These disjunct forests are broadly similar in climate to one another, offering an opportunity to examine drivers of distance decay in plant-associated fungi across multiple ecologically similar yet geographically disparate landscapes. We examined ectomycorrhizal and foliar endophytic fungi associated with a dominant forest tree (Pinus ponderosa) in forests across ca. 550 km of geographic distance from northwestern to southeastern Arizona (USA). Both guilds of fungi showed distance decay, but drivers differed for each: ectomycorrhizal fungi are constrained primarily by dispersal limitation, whereas foliar endophytes are constrained by specific environmental conditions. Most ectomycorrhizal fungi were found in only a single forested area, as were many endophytic fungi. Such regional-scale perspectives are needed for baseline estimates of fungal diversity associated with forest trees at a landscape scale, with attention to the sensitivity of different guilds of fungal symbionts to decreasing areas of suitable habitat, increasing disturbance, and related impacts of climate change.
Collapse
Affiliation(s)
- Elizabeth A. Bowman
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA
| | - A. Elizabeth Arnold
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ USA
| |
Collapse
|
10
|
Pine invasion drives loss of soil fungal diversity. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Oita S, Carey J, Kline I, Ibáñez A, Yang N, Hom EFY, Carbone I, U'Ren JM, Arnold AE. Methodological Approaches Frame Insights into Endophyte Richness and Community Composition. MICROBIAL ECOLOGY 2021; 82:21-34. [PMID: 33410938 DOI: 10.1007/s00248-020-01654-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Isolating microbes is vital to study microbiomes, but insights into microbial diversity and ecology can be constrained by recalcitrant or unculturable strains. Culture-free methods (e.g., next-generation sequencing, NGS) have become popular in part because they detect greater richness than culturing alone. Both approaches are used widely to characterize microfungi within healthy leaves (foliar endophytes), but methodological differences among studies can constrain large-scale insights into endophyte ecology. We examined endophytes in a temperate plant community to quantify how certain methodological factors, such as the choice of cultivation media for culturing and storage period after leaf collection, affect inferences regarding endophyte communities; how such effects vary among plant taxa; and how complementary culturing and NGS can be when subsets of the same plant tissue are used for each. We found that endophyte richness and composition from culturing were consistent across five media types. Insights from culturing and NGS were largely robust to differences in storage period (1, 5, and 10 days). Although endophyte richness, composition, and taxonomic diversity identified via culturing vs. NGS differed markedly, both methods revealed host-structured communities. Studies differing only in cultivation media or storage period thus can be compared to estimate endophyte richness, composition, and turnover at scales larger than those of individual studies alone. Our data show that it is likely more important to sample more host species, rather than sampling fewer species more intensively, to quantify endophyte diversity in given locations, with the richest insights into endophyte ecology emerging when culturing and NGS are paired.
Collapse
Affiliation(s)
- Shuzo Oita
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jamison Carey
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ian Kline
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Alicia Ibáñez
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Nathaniel Yang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Erik F Y Hom
- Department of Biology, Center for Biodiversity & Conservation Research, University of Mississippi, University, MS, 38677, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jana M U'Ren
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Oita S, Ibáñez A, Lutzoni F, Miadlikowska J, Geml J, Lewis LA, Hom EFY, Carbone I, U'Ren JM, Arnold AE. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun Biol 2021; 4:313. [PMID: 33750915 PMCID: PMC7943826 DOI: 10.1038/s42003-021-01826-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding how species-rich communities persist is a foundational question in ecology. In tropical forests, tree diversity is structured by edaphic factors, climate, and biotic interactions, with seasonality playing an essential role at landscape scales: wetter and less seasonal forests typically harbor higher tree diversity than more seasonal forests. We posited that the abiotic factors shaping tree diversity extend to hyperdiverse symbionts in leaves-fungal endophytes-that influence plant health, function, and resilience to stress. Through surveys in forests across Panama that considered climate, seasonality, and covarying biotic factors, we demonstrate that endophyte richness varies negatively with temperature seasonality. Endophyte community structure and taxonomic composition reflect both temperature seasonality and climate (mean annual temperature and precipitation). Overall our findings highlight the vital role of climate-related factors in shaping the hyperdiversity of these important and little-known symbionts of the trees that, in turn, form the foundations of tropical forest biodiversity.
Collapse
Affiliation(s)
- Shuzo Oita
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | | | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Eger, Hungary
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Erik F Y Hom
- Department of Biology, Center for Biodiversity and Conservation Research, University of Mississippi, University, MS, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Jana M U'Ren
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Diversity and Communities of Fungal Endophytes from Four Pinus Species in Korea. FORESTS 2021. [DOI: 10.3390/f12030302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are ubiquitous in nature. They are known as potential sources of natural products, and possible agents for biocontrol attributing to their ability to produce a repertoire of bioactive compounds. In this study, we isolated fungal endophytes from three different tissues (needle, stem and root) of four Pinus species (Pinus densiflora, Pinus koraiensis, Pnus rigida, and Pinus thunbergii) across 18 sampling sites in Korea. A total number of 5872 culturable fungal endophytes were isolated using standard culturing techniques. Molecular identification based on the sequence analyses of the internal transcribed spacer (ITS) or 28S ribosomal DNA revealed a total of 234 different fungal species. The isolated fungal endophytes belonged to Ascomycota (91.06%), Basidiomycota (5.95%) and Mucoromycota (2.97%), with 144 operational taxonomic units (OTUs) and 88 different genera. In all sampling sites, the highest species richness (S) was observed in site 1T (51 OTUs) while the lowest was observed in site 4T (27 OTUs). In terms of diversity, as measured by Shannon diversity index (H’), the sampling site 2D (H′ = 3.216) showed the highest while the lowest H’ was observed in site 2K (H’ = 2.232). Species richness (S) in three different tissues revealed that root and needle tissues are highly colonized with fungal endophytes compared to stem tissue. No significant difference was observed in the diversity of endophytes in three different tissues. Among the four Pinus species, P. thunbergii exhibited the highest species richness and diversity of fungal endophytes. Our findings also revealed that the environmental factors have no significant impact in shaping the composition of the fungal endophytes. Furthermore, FUNGuild analysis revealed three major classifications of fungal endophytes based on trophic modes namely saprotrophs, symbiotrophs, and pathotrophs in four Pinus species, with high proportions of saprotrophs and pathothrops.
Collapse
|
14
|
Fire and local factors shape ectomycorrhizal fungal communities associated with Pinus ponderosa in mountains of the Madrean Sky Island Archipelago. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Hashimoto A, Masumoto H, Endoh R, Degawa Y, Ohkuma M. Revision of Xylonaceae ( Xylonales, Xylonomycetes) to include Sarea and Tromera. MYCOSCIENCE 2021; 62:47-63. [PMID: 37090019 PMCID: PMC9157775 DOI: 10.47371/mycosci.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022]
Abstract
The resinicolous fungi Sarea difformis and S. resinae (Sareomycetes) were taxonomically revised on the basis of morphological observations and phylogenetic analyses of the nucleotide sequences of the nSSU-LSU-rpb1-rpb2-mtSSU genes. The results of phylogenetic analyses show that S. difformis and S. resinae are grouped with members of Xylonomycetes. According to the results of phylogenetic analyses and their sexual and asexual morphs resemblance, Sareomycetes is synonymized with Xylonomycetes. Although Tromera has been considered a synonym of Sarea based on the superficial resemblance of the sexual morph, we show that they are distinct genera and Tromera should be resurrected to accommodate T. resinae (= S. resinae). Xylonomycetes was morphologically re-circumscribed to comprise a single family (Xylonaceae) with four genera (Sarea, Trinosporium, Tromera, and Xylona) sharing an endophytic or plant saprobic stage in their lifecycle, ascostroma-type ascomata with paraphysoid, Lecanora-type bitunicate asci, and pycnidial asexual morphs. Phylogenetic analyses based on ITS sequences and environmental DNA (eDNA) implied a worldwide distribution of the species. Although Symbiotaphrinales has been treated as a member of Xylonomycetes in previous studies, it was shown to be phylogenetically, morphologically, and ecologically distinct. We, therefore, treated Symbiotaphrinales as Pezizomycotina incertae sedis.
Collapse
Affiliation(s)
- Akira Hashimoto
- Microbe Division / Japan Collection of Microorganisms RIKEN BioResource Research Center
| | - Hiroshi Masumoto
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| | - Rikiya Endoh
- Microbe Division / Japan Collection of Microorganisms RIKEN BioResource Research Center
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| | - Moriya Ohkuma
- Microbe Division / Japan Collection of Microorganisms RIKEN BioResource Research Center
| |
Collapse
|
16
|
Huang YL. Effect of Host, Environment and Fungal Growth on Fungal Leaf Endophyte Communities in Taiwan. J Fungi (Basel) 2020; 6:jof6040244. [PMID: 33114080 PMCID: PMC7712724 DOI: 10.3390/jof6040244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Fungal endophytes inhabit plant tissues without causing disease symptoms. They are highly diverse and distributed globally in all plants that have been investigated. Host, geographic, and environmental effects on endophyte communities have been reported in several studies, but the direct effect of fungal growth rate on endophyte composition has not been tested. To understand the relationship between foliar endophyte composition and fungal growth and to examine the effect of host, elevation, and climatic factors on the foliar endophyte communities, this study examined the foliar endophyte communities of representative gymnosperms and Rhododendron spp. across different elevations of Hehuanshan and Taipingshan forests in Taiwan. The isolation frequency and diversity of foliar endophytes were higher at low elevations than at high elevations. The foliar endophyte community structure differed as a function of host family and forest vegetation type. Elevation, mean annual temperature, and precipitation were significantly correlated with the community structure. Fungal growth rate was correlated with the endophyte abundance, which indicates that fast-growing fungi might have a competitive advantage when coexisting with other fungi in a plant host.
Collapse
Affiliation(s)
- Yu-Ling Huang
- Department of Biology, National Museum of Natural Science, Taichung 40453, Taiwan
| |
Collapse
|
17
|
Rodríguez-Gutiérrez I, Garibay-Orijel R, Santiago-Morales B, Lindig-Cisneros R. Comparación entre las abundancias de esporomas y ectomicorrizas del género Laccaria en Ixtlán de Juárez, Oaxaca. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.3340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Kraus C, Damm U, Bien S, Voegele RT, Fischer M. New species of Phaeomoniellales from a German vineyard and their potential threat to grapevine ( Vitis vinifera) health. Fungal Syst Evol 2020; 6:139-155. [PMID: 32904175 PMCID: PMC7452154 DOI: 10.3114/fuse.2020.06.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, the order Phaeomoniellales was established that includes fungi closely related to Phaeomoniella chlamydospora, a phytopathogen assumed to be the main causal agent of the two most destructive grapevine trunk diseases, Petri disease and esca. Other species of this order are reported as pathogens of other economically important crops, like olive, peach, apricot, cherry, plum, rambutan, lichee or langsat. However, they are rarely isolated and hence, little is known about their ecological traits and pathogenicity. During a 1-yr period of spore trapping in a German vineyard divided in minimally and intensively pruned grapevines, 23 fungal strains of the Phaeomoniellales were collected. Based on morphological and molecular (ITS, LSU and tub2) analyses the isolated strains were assigned to eight different species. Two species were identified as P. chlamydospora and Neophaeomoniella zymoides, respectively. The remaining six species displayed morphological and molecular differences to known species of the Phaeomoniellales and are newly described, namely Aequabiliellapalatina, Minutiella simplex, Moristroma germanicum, Mo. palatinum,Neophaeomoniella constricta and N. ossiformis. A pathogenicity test conducted in the greenhouse revealed that except for P. chlamydospora, none of the species of the Phaeomoniellales isolated from spore traps is able to induce lesions in grapevine wood.
Collapse
Affiliation(s)
- C Kraus
- Julius Kühn-Institute, Federal Research Centre of Cultivated Plants, Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany.,University of Hohenheim, Department of Phytopathology, 70599 Hohenheim, Germany
| | - U Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - S Bien
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - R T Voegele
- University of Hohenheim, Department of Phytopathology, 70599 Hohenheim, Germany
| | - M Fischer
- Julius Kühn-Institute, Federal Research Centre of Cultivated Plants, Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany
| |
Collapse
|
19
|
Fungal Diversity in the Phyllosphere of Pinus heldreichii H. Christ—An Endemic and High-Altitude Pine of the Mediterranean Region. DIVERSITY 2020. [DOI: 10.3390/d12050172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pinus heldreichii is a high-altitude coniferous tree species naturaly occurring in small and disjuncted populations in the Balkans and southern Italy. The aim of this study was to assess diversity and composition of fungal communities in living needles of P. heldreichii specifically focusing on fungal pathogens. Sampling was carried out at six different sites in Montenegro, where 2-4 year-old living needles of P. heldreichii were collected. Following DNA isolation, it was amplified using ITS2 rDNA as a marker and subjected to high-throughput sequencing. Sequencing resulted in 31,831 high quality reads, which after assembly were found to represent 375 fungal taxa. The detected fungi were 295 (78.7%) Ascomycota, 79 (21.0%) Basidiomycota and 1 (0.2%) Mortierellomycotina. The most common fungi were Lophodermium pinastri (12.5% of all high-quality sequences), L. conigenum (10.9%), Sydowia polyspora (8.8%), Cyclaneusma niveum (5.5%), Unidentified sp. 2814_1 (5.4%) and Phaeosphaeria punctiformis (4.4%). The community composition varied among different sites, but in this respect two sites at higher altitudes (harsh growing conditions) were separated from three sites at lower altitudes (milder growing conditions), suggesting that environmental conditions were among major determinants of fungal communities associated with needles of P. heldreichii. Trees on one study site were attacked by bark beetles, leading to discolouration and frequent dieback of needles, thereby strongly affecting the fungal community structure. Among all functional groups of fungi, pathogens appeared to be an important component of fungal communities in the phyllosphere of P. heldreichii, especially in those trees under strong abiotic and biotic stress.
Collapse
|
20
|
Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol 2020; 22:2107-2123. [PMID: 32115818 DOI: 10.1111/1462-2920.14968] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
Abstract
The interiors of plants are colonized by diverse microorganisms that are referred to as endophytes. Endophytes have received much attention over the past few decades, yet many questions remain unanswered regarding patterns in their biodiversity at local to global scales. To characterize research effort to date, we synthesized results from ~600 published studies. Our survey revealed a global research interest and highlighted several gaps in knowledge. For instance, of the 17 biomes encompassed by our survey, 7 were understudied and together composed only 7% of the studies that we considered. We found that fungal endophyte diversity has been characterized in at least one host from 30% of embryophyte families, while bacterial endophytes have been surveyed in hosts from only 10.5% of families. We complimented our survey with a vote counting procedure to determine endophyte richness patterns among plant tissue types. We found that variation in endophyte assemblages in above-ground tissues varied with host growth habit. Stems were the richest tissue in woody plants, whereas roots were the richest tissue in graminoids. For forbs, we found no consistent differences in relative tissue richness among studies. We propose future directions to fill the gaps in knowledge we uncovered and inspire further research.
Collapse
Affiliation(s)
- Joshua G Harrison
- Department of Botany, University of Wyoming, 3165, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Eric A Griffin
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, 87701, USA
| |
Collapse
|
21
|
Truong C, Gabbarini LA, Corrales A, Mujic AB, Escobar JM, Moretto A, Smith ME. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. THE NEW PHYTOLOGIST 2019; 222:1936-1950. [PMID: 30689219 DOI: 10.1111/nph.15714] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The biological and functional diversity of ectomycorrhizal (ECM) associations remain largely unknown in South America. In Patagonia, the ECM tree Nothofagus pumilio forms monospecific forests along mountain slopes without confounding effects of vegetation on plant-fungi interactions. To determine how fungal diversity and function are linked to elevation, we characterized fungal communities, edaphic variables, and eight extracellular enzyme activities along six elevation transects in Tierra del Fuego (Argentina and Chile). We also tested whether pairing ITS1 rDNA Illumina sequences generated taxonomic biases related to sequence length. Fungal community shifts across elevations were mediated primarily by soil pH with the most species-rich fungal families occurring mostly within a narrow pH range. By contrast, enzyme activities were minimally influenced by elevation but correlated with soil factors, especially total soil carbon. The activity of leucine aminopeptidase was positively correlated with ECM fungal richness and abundance, and acid phosphatase was correlated with nonECM fungal abundance. Several fungal lineages were undetected when using exclusively paired or unpaired forward ITS1 sequences, and these taxonomic biases need reconsideration for future studies. Our results suggest that soil fungi in N. pumilio forests are functionally similar across elevations and that these diverse communities help to maintain nutrient mobilization across the elevation gradient.
Collapse
Affiliation(s)
- Camille Truong
- Instituto de Biología, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, México
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Luciano A Gabbarini
- Programa Interacciones Biológicas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, B1876BX, Argentina
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC, 111221, Colombia
| | - Alija B Mujic
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, California State University at Fresno, Fresno, CA, 93740, USA
| | - Julio M Escobar
- Centro Austral de Investigaciones Científicas (CONICET), Ushuaia, V9410BFD, Tierra del Fuego, Argentina
| | - Alicia Moretto
- Centro Austral de Investigaciones Científicas (CONICET), Ushuaia, V9410BFD, Tierra del Fuego, Argentina
- Universidad Nacional de Tierra del Fuego, Ushuaia, V9410BFD, Tierra del Fuego, Argentina
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
22
|
Daru BH, Bowman EA, Pfister DH, Arnold AE. A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170395. [PMID: 30455213 PMCID: PMC6282087 DOI: 10.1098/rstb.2017.0395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Herbarium specimens represent important records of morphological and genetic diversity of plants that inform questions relevant to global change, including species distributions, phenology and functional traits. It is increasingly appreciated that plant microbiomes can influence these aspects of plant biology, but little is known regarding the historic distribution of microbes associated with plants collected in the pre-molecular age. If microbiomes can be observed reliably in herbarium specimens, researchers will gain a new lens with which to examine microbial ecology, evolution, species interactions. Here, we describe a method for accessing historical plant microbiomes from preserved herbarium specimens, providing a proof of concept using two plant taxa from the imperiled boreal biome (Andromeda polifolia and Ledum palustre subsp. groenlandicum, Ericaceae). We focus on fungal endophytes, which occur within symptomless plant tissues such as leaves. Through a three-part approach (i.e. culturing, cloning and next-generation amplicon sequencing via the Illumina MiSeq platform, with extensive controls), we examined endophyte communities in dried, pressed leaves that had been processed as regular herbarium specimens and stored at room temperature in a herbarium for four years. We retrieved only one endophyte in culture, but cloning and especially the MiSeq analysis revealed a rich community of foliar endophytes. The phylogenetic distribution and diversity of endophyte assemblages, especially among the Ascomycota, resemble endophyte communities from fresh plants collected in the boreal biome. We could distinguish communities of endophytes in each plant species and differentiate likely endophytes from fungi that could be surface contaminants. Taxa found by cloning were observed in the larger MiSeq dataset, but species richness was greater when subsets of the same tissues were evaluated with the MiSeq approach. Our findings provide a proof of concept for capturing endophyte DNA from herbarium specimens, supporting the importance of herbarium records as roadmaps for understanding the dynamics of plant-associated microbial biodiversity in the Anthropocene.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | | | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|