1
|
Paiva DC, Roddy AB. Flower longevity and size are coordinated with ecophysiological traits in a tropical montane ecosystem. THE NEW PHYTOLOGIST 2024; 244:344-350. [PMID: 39103979 DOI: 10.1111/nph.20027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Dario C Paiva
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Buonaiuto DM, Davies TJ, Collins SC, Wolkovich EM. Ecological drivers of flower-leaf sequences: aridity and proxies for pollinator attraction select for flowering-first in the American plums. THE NEW PHYTOLOGIST 2024. [PMID: 38561636 DOI: 10.1111/nph.19685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Across temperate forests, many tree species produce flowers before their leaves emerge. This flower-leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower-leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect-pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses - that hysteranthy confers aridity tolerance and/or pollinator visibility - by modeling the associations between hysteranthy and related traits. To understand how these phenology-trait associations were sensitive to taxonomic scale and flower-leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility - thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower-leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.
Collapse
Affiliation(s)
- D M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - T J Davies
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - S C Collins
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Guo L, Liu X, Alatalo JM, Wang C, Xu J, Yu H, Chen J, Yu Q, Peng C, Dai J, Luedeling E. Climatic drivers and ecological implications of variation in the time interval between leaf-out and flowering. Curr Biol 2023; 33:3338-3349.e3. [PMID: 37490919 DOI: 10.1016/j.cub.2023.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Leaf-out and flowering in any given species have evolved to occur in a predetermined sequence, with the inter-stage time interval optimized to maximize plant fitness. Although warming-induced advances of both leaf-out and flowering are well documented, it remains unclear whether shifts in these phenological phases differ in magnitudes and whether changes have occurred in the length of the inter-stage intervals. Here, we present an extensive synthesis of warming effects on flower-leaf time intervals, using long-term (1963-2014) and in situ data consisting of 11,858 leaf-out and flowering records for 183 species across China. We found that the timing of both spring phenological events was generally advanced, indicating a dominant impact of forcing conditions compared with chilling. Stable time intervals between leaf-out and flowering prevailed for most of the time series despite increasing temperatures; however, some of the investigated cases featured significant changes in the time intervals. The latter could be explained by differences in the temperature sensitivity (ST) between leaf and flower phenology. Greater ST for flowering than for leaf-out caused flowering times to advance faster than leaf emergence. This shortened the inter-stage intervals in leaf-first species and lengthened them in flower-first species. Variation in the time intervals between leaf-out and flowering events may have far-reaching ecological and evolutionary consequences, with implications for species fitness, intra/inter-species interactions, and ecosystem structure, function, and stability.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaowei Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha 2713, Qatar
| | - Chuanyao Wang
- College of Forestry (Academy of Forestry), Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianchu Xu
- Center for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; World Agroforestry Center, Nairobi 00100, Kenya
| | - Haiying Yu
- College of A&F Engineering and Planning, Tongren University, Tongren, Guizhou 554300, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Jutland 8830, Denmark
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changhui Peng
- School of Geographic Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada.
| | - Junhu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences-Higher Education Commission of Pakistan, Islamabad 45320, Pakistan.
| | - Eike Luedeling
- INRES-Horticultural Sciences, University of Bonn, Bonn, Nordrhein-Westfalen 53121, Germany
| |
Collapse
|
4
|
Wang S, Wu Z, Gong Y, Wang S, Zhang W, Zhang S, De Boeck HJ, Fu YH. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2316-2324. [PMID: 35474153 DOI: 10.1007/s11427-022-2094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The timing of flowering (FL) and leaf unfolding (LU) determine plants' reproduction and vegetative growth. Global warming has substantially advanced FL and LU of temperate and boreal plants, but their responses to warming differ, which may influence the time interval between FL and LU (∆LU-FL), thereby impacting plant fitness and intraspecific physiological processes. Based on twigs collected from two flowering-first tree species, Populus tomentosa and Amygdalus triloba, we conducted a manipulative experiment to investigate the effects of winter chilling, spring warming and photoperiod on the ∆LU-FL. We found that photoperiod did not affect the ∆LU-FL of Amygdalus triloba, but shortened ∆LU-FL by 5.1 d of Populus tomentosa. Interestingly, spring warming and winter chilling oppositely affected the ∆LU-FL of both species. Specifically, low chilling accumulation extended the ∆LU-FL by 3.8 and 9.4 d for Populus tomentosa and Amygdalus triloba, but spring warming shortened the ∆LU-FL by 4.1 and 0.2 d °C-1. Our results indicate that climate warming will decrease or increase the ∆LU-FL depending on the warming periods, i.e., spring or winter. The shifted time interval between flowering and leaf unfolding may have ecological effects including affecting pollen transfer efficiency and alter the structure and functioning of terrestrial ecosystem.
Collapse
Affiliation(s)
- Shuxin Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China
| | - Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China
| | - Yufeng Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China
| | | | | | | | - Hans J De Boeck
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Antwerpen, 2000, Belgium
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China.
| |
Collapse
|
5
|
McMann N, Peichel A, Savage JA. Early spring flowers rely on xylem hydration but are not limited by stem xylem conductivity. THE NEW PHYTOLOGIST 2022; 233:838-850. [PMID: 34618926 DOI: 10.1111/nph.17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Many woody plants produce large floral displays early in the spring when xylem transport can be variable and often reduced. To determine whether stem hydraulics impact floral water use, we quantified floral transpiration and tested whether it was correlated with stem xylem conductivity in five temperate woody species that flower before producing leaves. We measured inflorescence gas exchange, examined the relationship between diffusive conductance and inflorescence morphology, and estimated the amount of water supplied to an inflorescence by the phloem. We also tested for correlation between transpiration and native stem xylem conductivity for branches with leaves and branches with flowers. The flowers of our study species obtain most of their water from the xylem. Diffusive conductance was higher in small inflorescences, but water content and daily transpiration rates were greater for larger inflorescences. We found no correlation between floral transpiration per branch and stem xylem conductivity within species. The data suggest that inflorescence water loss during anthesis is not limited by the xylem in our study species. We highlight the impact of floral morphology on hydraulic traits and encourage exploration into temporal shifts in floral hydration.
Collapse
Affiliation(s)
- Natalie McMann
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Alexander Peichel
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| |
Collapse
|
6
|
Villouta C, Workmaster BA, Livingston DP, Atucha A. Acquisition of Freezing Tolerance in Vaccinium macrocarpon Ait. Is a Multi-Factor Process Involving the Presence of an Ice Barrier at the Bud Base. FRONTIERS IN PLANT SCIENCE 2022; 13:891488. [PMID: 35599888 PMCID: PMC9115472 DOI: 10.3389/fpls.2022.891488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 05/17/2023]
Abstract
Bud freezing survival strategies have in common the presence of an ice barrier that impedes the propagation of lethally damaging ice from the stem into the internal structures of buds. Despite ice barriers' essential role in buds freezing stress survival, the nature of ice barriers in woody plants is not well understood. High-definition thermal recordings of Vaccinium macrocarpon Ait. buds explored the presence of an ice barrier at the bud base in September, January, and May. Light and confocal microscopy were used to evaluate the ice barrier region anatomy and cell wall composition related to their freezing tolerance. Buds had a temporal ice barrier at the bud base in September and January, although buds were only freezing tolerant in January. Lack of functionality of vascular tissues may contribute to the impedance of ice propagation. Pith tissue at the bud base had comparatively high levels of de-methyl-esterified homogalacturonan (HG), which may also block ice propagation. By May, the ice barrier was absent, xylogenesis had resumed, and de-methyl-esterified HG reached its lowest levels, translating into a loss of freezing tolerance. The structural components of the barrier had a constitutive nature, resulting in an asynchronous development of freezing tolerance between anatomical and metabolic adaptations.
Collapse
Affiliation(s)
- Camilo Villouta
- Arnold Arboretum of Harvard University, Boston, MA, United States
| | - Beth Ann Workmaster
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - David P. Livingston
- Department of Crop and Soil Sciences, USDA-ARS and North Carolina State University, Raleigh, NC, United States
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Amaya Atucha,
| |
Collapse
|
7
|
Barceló-Anguiano M, Holbrook NM, Hormaza JI, Losada JM. Changes in ploidy affect vascular allometry and hydraulic function in Mangifera indica trees. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:541-554. [PMID: 34403543 DOI: 10.1111/tpj.15460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The enucleated vascular elements of the xylem and the phloem offer an excellent system to test the effect of ploidy on plant function because variation in vascular geometry has a direct influence on transport efficiency. However, evaluations of conduit sizes in polyploid plants have remained elusive, most remarkably in woody species. We used a combination of molecular, physiological and microscopy techniques to model the hydraulic resistance between source and sinks in tetraploid and diploid mango trees. Tetraploids exhibited larger chloroplasts, mesophyll cells and stomatal guard cells, resulting in higher leaf elastic modulus and lower dehydration rates, despite the high water potentials of both ploidies in the field. Both the xylem and the phloem displayed a scaling of conduits with ploidy, revealing attenuated hydraulic resistance in tetraploids. Conspicuous wall hygroscopic moieties in the cells involved in transpiration and transport indicate a role in volumetric adjustments as a result of turgor change in both ploidies. In autotetraploids, the enlargement of organelles, cells and tissues, which are critical for water and photoassimilate transport at long distances, point to major physiological novelties associated with whole-genome duplication.
Collapse
Affiliation(s)
- Miguel Barceló-Anguiano
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' - CSIC - UMA, Avda. Dr. Wienberg s/n, Málaga, 29750, Spain
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - José I Hormaza
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' - CSIC - UMA, Avda. Dr. Wienberg s/n, Málaga, 29750, Spain
| | - Juan M Losada
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' - CSIC - UMA, Avda. Dr. Wienberg s/n, Málaga, 29750, Spain
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
8
|
Ray DM, Savage JA. Seasonal changes in temperate woody plant phloem anatomy and physiology: implications for long-distance transport. AOB PLANTS 2021; 13:plab028. [PMID: 34234934 PMCID: PMC8255074 DOI: 10.1093/aobpla/plab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Seasonal changes in climate are accompanied by shifts in carbon allocation and phenological changes in woody angiosperms, the timing of which can have broad implications for species distributions, interactions and ecosystem processes. During critical transitions from autumn to winter and winter to spring, physiological and anatomical changes within the phloem could impose a physical limit on the ability of woody angiosperms to transport carbon and signals. There is a paucity of the literature that addresses tree (floral or foliar) phenology, seasonal phloem anatomy and seasonal phloem physiology together, so our knowledge of how carbon transport could fluctuate seasonally, especially in temperate climates is limited. We review phloem phenology focussing on how sieve element anatomy and phloem sap flow could affect carbon availability throughout the year with a focus on winter. To investigate whether flow is possible in the winter, we construct a simple model of phloem sap flow and investigate how changes to the sap concentration, pressure gradient and sieve plate pores could influence flow during the winter. Our model suggests that phloem transport in some species could occur year-round, even in winter, but current methods for measuring all the parameters surrounding phloem sap flow make it difficult to test this hypothesis. We highlight outstanding questions that remain about phloem functionality in the winter and emphasize the need for new methods to address gaps in our knowledge about phloem function.
Collapse
Affiliation(s)
- Dustin M Ray
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| |
Collapse
|
9
|
Collins CG, Elmendorf SC, Hollister RD, Henry GHR, Clark K, Bjorkman AD, Myers-Smith IH, Prevéy JS, Ashton IW, Assmann JJ, Alatalo JM, Carbognani M, Chisholm C, Cooper EJ, Forrester C, Jónsdóttir IS, Klanderud K, Kopp CW, Livensperger C, Mauritz M, May JL, Molau U, Oberbauer SF, Ogburn E, Panchen ZA, Petraglia A, Post E, Rixen C, Rodenhizer H, Schuur EAG, Semenchuk P, Smith JG, Steltzer H, Totland Ø, Walker MD, Welker JM, Suding KN. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat Commun 2021; 12:3442. [PMID: 34117253 PMCID: PMC8196023 DOI: 10.1038/s41467-021-23841-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.
Collapse
Affiliation(s)
- Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.
| | - Sarah C Elmendorf
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Robert D Hollister
- Department of Biology, Grand Valley State University, Allendale, MI, USA
| | - Greg H R Henry
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Karin Clark
- Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Isabel W Ashton
- National Park Service, Inventory & Monitoring Division, Rapid City, SD, USA
| | | | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chelsea Chisholm
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, The Arctic University of Norway UiT, Tromsø, Norway
| | - Chiara Forrester
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Ingibjörg Svala Jónsdóttir
- Department of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- The University Centre in Svalbard (UNIS), Longyearbyen, Svalbard, Norway
| | - Kari Klanderud
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Christopher W Kopp
- Biodiversity Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | - Marguerite Mauritz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeremy L May
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Ulf Molau
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Steven F Oberbauer
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Emily Ogburn
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe A Panchen
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Eric Post
- Department of Wildlife, Fish, & Conservation Biology, University of California Davis, Davis, CA, USA
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Davos, Switzerland
| | - Heidi Rodenhizer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Philipp Semenchuk
- Department of Botany and Biodiversity Research, The University of Vienna, Vienna, Austria
| | - Jane G Smith
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Heidi Steltzer
- Department of Environment and Sustainability, Fort Lewis College, Durango, CO, USA
| | - Ørjan Totland
- Department of Biological Sciences, The University of Bergen, Bergen, Norway
| | | | - Jeffrey M Welker
- Department of Biological Sciences, The University of Alaska Anchorage, Anchorage, AK, USA
- Department of Ecology and Genetics, The University of Oulu, Oulu, Finland
| | - Katharine N Suding
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Savage JA, Chuine I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. THE NEW PHYTOLOGIST 2021; 230:1700-1715. [PMID: 33608961 DOI: 10.1111/nph.17289] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 05/29/2023]
Abstract
In seasonally cold climates, many woody plants tolerate chilling and freezing temperatures by ceasing growth, shedding leaves and entering dormancy. At the same time, transport within these plants often decreases as the vascular system exhibits reduced functionality. As spring growth requires water and nutrients, we ask the question: how much does bud, leaf and flower development depend on the vasculature in spring? In this review, we present what is known about leaf, flower and vascular phenology to sort out this question. In early stages of bud development, buds rely on internal resources and do not appear to require vascular support. The situation changes during organ expansion, after leaves and flowers reconnect to the stem vascular system. However, there are major gaps in our understanding of the timing of vascular development, especially regarding the phloem, as well as the synchronization among leaves, flowers, stem and root vasculature. We believe these gaps are mainly the outcome of research completed in silo and urge future work to take a more integrative approach. We highlight current challenges and propose future directions to make rapid progress on this important topic in upcoming years.
Collapse
Affiliation(s)
- Jessica A Savage
- Department of Biology, University of Minnesota, Duluth, MN, 55811, USA
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, FR-34293, Cedex 5, France
| |
Collapse
|
11
|
Buonaiuto DM, Morales-Castilla I, Wolkovich EM. Reconciling competing hypotheses regarding flower-leaf sequences in temperate forests for fundamental and global change biology. THE NEW PHYTOLOGIST 2021; 229:1206-1214. [PMID: 32750742 DOI: 10.1111/nph.16848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Phenology is a major component of an organism's fitness. While individual phenological events affect fitness, there is growing evidence to suggest that the relationship between events could be equally or more important. This could explain why temperate deciduous woody plants exhibit considerable variation in the order of reproductive and vegetative events, or flower-leaf sequences (FLSs). There is evidence to suggest that FLSs may be adaptive, with several competing hypotheses to explain their function. Here, we advance existing hypotheses with a new framework that accounts for quantitative FLS variation at multiple taxonomic scales using case studies from temperate forests. Our inquiry provides several major insights towards a better understanding of FLS variation. First, we show that support for FLS hypotheses is sensitive to how FLSs are defined, with quantitative definitions being the most useful for robust hypothesis testing. Second, we demonstrate that concurrent support for multiple hypotheses should be the starting point for future FLS analyses. Finally, we highlight how adopting a quantitative, intraspecific approach generates new avenues for evaluating fitness consequences of FLS variation and provides cascading benefits to improving predictions of how climate change will alter FLSs and thereby reshape plant communities and ecosystems.
Collapse
Affiliation(s)
- D M Buonaiuto
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ignacio Morales-Castilla
- Global Change Ecology and Evolution (GloCEE), Department of Life Sciences, University of Alcalà, Alcalà de Henares, 28805, Spain
| | - E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
12
|
Savage JA. It's all about timing-or is it? Exploring the potential connection between phloem physiology and whole plant phenology. AMERICAN JOURNAL OF BOTANY 2020; 107:848-851. [PMID: 32458416 DOI: 10.1002/ajb2.1480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
|