1
|
Iriart V, Rarick EM, Ashman TL. Rhizobial variation, more than plant variation, mediates plant symbiotic and fitness responses to herbicide stress. Ecology 2024:e4426. [PMID: 39440990 DOI: 10.1002/ecy.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Symbiotic mutualisms provide critical ecosystem services throughout the world. Anthropogenic stressors, however, may disrupt mutualistic interactions and impact ecosystem health. The plant-rhizobia symbiosis promotes plant growth and contributes to the nitrogen (N) cycle. While off-target herbicide exposure is recognized as a significant stressor impacting wild plants, we lack knowledge about how it affects the symbiotic relationship between plants and rhizobia. Moreover, we do not know whether the impact of herbicide exposure on symbiotic traits or plant fitness might be ameliorated by plant or rhizobial genetic variation. To address these gaps, we conducted a greenhouse study where we grew 17 full-sibling genetic families of red clover (Trifolium pratense) either alone (uninoculated) or in symbiosis with one of two genetic strains of rhizobia (Rhizobium leguminosarum) and exposed them to a concentration of the herbicide dicamba that simulated "drift" (i.e., off-target atmospheric movement) or a control solution. We recorded responses in immediate vegetative injury, key features of the plant-rhizobia mutualism (nodule number, nodule size, and N fixation), mutualism outcomes, and plant fitness (biomass). In general, we found that rhizobial variation more than plant variation determined outcomes of mutualism and plant fitness in response to herbicide exposure. Herbicide damage response depended on plant family, but also whether plants were inoculated with rhizobia and if so, with which strain. Rhizobial strain variation determined nodule number and size, but this was herbicide treatment-dependent. In contrast, strain and herbicide treatment independently impacted symbiotic N fixation. And while herbicide exposure significantly reduced plant fitness, this effect depended on inoculation state. Furthermore, the differential fitness benefits that the two rhizobial strains provided plants seemed to diminish under herbicidal conditions. Altogether, these findings suggest that exposure to low levels of herbicide impact key components of the plant-rhizobia mutualism as well as plant fitness, but genetic variation in the partners determines the magnitude and/or direction of these effects. In particular, our results highlight a strong role of rhizobial strain identity in driving both symbiotic and plant growth responses to herbicide stress.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Rarick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Cruz FVDS, Barbosa da Costa N, Juneau P. Non-pathogenic microbiome associated to aquatic plants and anthropogenic impacts on this interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174663. [PMID: 38992379 DOI: 10.1016/j.scitotenv.2024.174663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The microbiota associated with aquatic plants plays a crucial role in promoting plant growth and development. The structure of the plant microbiome is shaped by intricate interactions among hosts, microbes, and environmental factors. Consequently, anthropogenic pressures that disrupt these interactions can indirectly impact the ecosystem services provided by aquatic plants, such as CO2 fixation, provision of food resources, shelter to animals, nutrient cycling, and water purification. Presently, studies on plant-microbiota interactions primarily focus on terrestrial hosts and overlook aquatic environments with their unique microbiomes. Therefore, there is a pressing need for a comprehensive understanding of plant microbiomes in aquatic ecosystems. This review delves into the overall composition of the microbiota associated with aquatic plant, with a particular emphasis on bacterial communities, which have been more extensively studied. Subsequently, the functions provided by the microbiota to their aquatic plants hosts are explored, including the acquisition and mobilization of nutrients, production of auxin and related compounds, enhancement of photosynthesis, and protection against biotic and abiotic stresses. Additionally, the influence of anthropogenic stressors, such as climate change and aquatic contamination, on the interaction between microbiota and aquatic plants is discussed. Finally, knowledge gaps are highlighted and future directions in this field are suggested.
Collapse
Affiliation(s)
- Fernanda Vieira da Silva Cruz
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal Succ. Centre-Ville, H3C 3P8 Montréal, QC, Canada
| | - Naíla Barbosa da Costa
- Institut national de la recherche scientifique - Centre Eau Terre Environnement, 490 Couronne St, Québec City, Québec G1K 9A9, Canada
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal Succ. Centre-Ville, H3C 3P8 Montréal, QC, Canada.
| |
Collapse
|
3
|
Laurich JR, Lash E, O'Brien AM, Pogoutse O, Frederickson ME. Community interactions among microbes give rise to host-microbiome mutualisms in an aquatic plant. mBio 2024; 15:e0097224. [PMID: 38904411 PMCID: PMC11324027 DOI: 10.1128/mbio.00972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.
Collapse
Affiliation(s)
- Jason R. Laurich
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Emma Lash
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Anna M. O'Brien
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
- Department of
Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham,
New Hampshire, USA
| | - Oxana Pogoutse
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Megan E. Frederickson
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
4
|
Schmid MW, Moradi A, Leigh DM, Schuman MC, van Moorsel SJ. Covering the bases: Population genomic structure of Lemna minor and the cryptic species L. japonica in Switzerland. Ecol Evol 2024; 14:e11599. [PMID: 38882534 PMCID: PMC11178436 DOI: 10.1002/ece3.11599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Duckweeds, including the common duckweed Lemna minor, are increasingly used to test eco-evolutionary theories. Yet, despite its popularity and near-global distribution, the understanding of its population structure (and genetic variation therein) is still limited. It is essential that this is resolved, because of the impact genetic diversity has on experimental responses and scientific understanding. Through whole-genome sequencing, we assessed the genetic diversity and population genomic structure of 23 natural Lemna spp. populations from their natural range in Switzerland. We used two distinct analytical approaches, a reference-free kmer approach and the classical reference-based one. Two genetic clusters were identified across the described species distribution of L. minor, surprisingly corresponding to species-level divisions. The first cluster contained the targeted L. minor individuals and the second contained individuals from a cryptic species: Lemna japonica. Within the L. minor cluster, we identified a well-defined population structure with little intra-population genetic diversity (i.e., within ponds) but high inter-population diversity (i.e., between ponds). In L. japonica, the population structure was significantly weaker and genetic variation between a subset of populations was as low as within populations. This study revealed that L. japonica is more widespread than previously thought. Our findings signify that thorough genotype-to-phenotype analyses are needed in duckweed experimental ecology and evolution.
Collapse
Affiliation(s)
| | - Aboubakr Moradi
- Department of Geography University of Zurich Zurich Switzerland
- Department of Chemistry University of Zurich Zurich Switzerland
| | - Deborah M Leigh
- Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Meredith C Schuman
- Department of Geography University of Zurich Zurich Switzerland
- Department of Chemistry University of Zurich Zurich Switzerland
| | | |
Collapse
|
5
|
O'Brien AM, Laurich JR, Frederickson ME. Evolutionary consequences of microbiomes for hosts: impacts on host fitness, traits, and heritability. Evolution 2024; 78:237-252. [PMID: 37828761 DOI: 10.1093/evolut/qpad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
An organism's phenotypes and fitness often depend on the interactive effects of its genome (Ghost), microbiome (Gmicrobe), and environment (E). These G × G, G × E, and G × G × E effects fundamentally shape host-microbiome (co)evolution and may be widespread, but are rarely compared within a single experiment. We collected and cultured Lemnaminor (duckweed) and its associated microbiome from 10 sites across an urban-to-rural ecotone. We factorially manipulated host genotype and microbiome in two environments (low and high zinc, an urban aquatic stressor) in an experiment with 200 treatments: 10 host genotypes × 10 microbiomes × 2 environments. Host genotype explained the most variation in L.minor fitness and traits, while microbiome effects often depended on host genotype (G × G). Microbiome composition predicted G × G effects: when compared in more similar microbiomes, duckweed genotypes had more similar effects on traits. Further, host fitness increased and microbes grew faster when applied microbiomes more closely matched the host's field microbiome, suggesting some local adaptation between hosts and microbiota. Finally, selection on and heritability of host traits shifted across microbiomes and zinc exposure. Thus, we found that microbiomes impact host fitness, trait expression, and heritability, with implications for host-microbiome evolution and microbiome breeding.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Harrison TL, Parshuram ZA, Frederickson ME, Stinchcombe JR. Is there a latitudinal diversity gradient for symbiotic microbes? A case study with sensitive partridge peas. Mol Ecol 2024; 33:e17191. [PMID: 37941312 DOI: 10.1111/mec.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Mutualism is thought to be more prevalent in the tropics than temperate zones and may therefore play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans. We sampled bacteria DNA from nodules and the surrounding soil of plant roots across a latitudinal gradient (38.64-8.68 °N). Using 16S rRNA sequence data, we identified many non-rhizobial species within C. nictitans nodules that cannot form nodules or fix nitrogen. Species richness increased towards lower latitudes in the non-rhizobial portion of the nodule community but not in the rhizobial community. The microbe community in the soil did not effectively predict the non-rhizobia community inside nodules, indicating that host selection is important for structuring non-rhizobia communities in nodules. We next factorially manipulated the presence of three non-rhizobia strains in greenhouse experiments and found that co-inoculations of non-rhizobia strains with rhizobia had a marginal effect on nodule number and no effect on plant growth. Our results suggest that these non-rhizobia bacteria are likely commensals-species that benefit from associating with a host but are neutral for host fitness. Overall, our study suggests that temperate C. nictitans plants are more selective in their associations with the non-rhizobia community, potentially due to differences in soil nitrogen across latitude.
Collapse
Affiliation(s)
- Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
White A, Giannetto M, Mulla L, Del Rosario A, Lim T, Culver E, Timmer M, Bushell J, Lambert MR, Hernández-Gómez O. Bacterial communities of the threatened Western Pond Turtle may be impacted by land use. FEMS Microbiol Ecol 2023; 99:fiad143. [PMID: 37950563 DOI: 10.1093/femsec/fiad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
As semi-aquatic species that use both terrestrial and aquatic habitats, freshwater turtles and their microbial communities are especially sensitive to the impacts of habitat disturbance. In this study, we use 16S rRNA amplicon sequencing to characterize the shell and cloacal bacterial communities of turtles in the San Francisco Bay Area. We captured western pond turtles (Actinemys/Emys marmorata) across eight sites located in urban and rural environments, along with invasive red-eared sliders (Trachemys scripta elegans). We assessed differences in western pond turtle bacterial communities diversity/composition between shell and cloacal samples and evaluated how alpha/beta diversity metrics were influenced by habitat quality. We found phylum-level bacterial taxonomic turnover in the bacterial communities of western pond turtles relative to the host tissue substrate samples. Our findings indicate that location identity elicits a high degree of lower-level (i.e. species/genus) bacterial taxonomic turnover. Further, we found that samples originating from good quality habitat had poorer shell bacterial communities but more diverse cloacal ones. The shell bacterial communities of red-eared sliders overlapped with those western pond turtles suggesting the existence of microbial dispersal between these two species. Our results add to our current understanding of turtle symbiont microbial ecology by establishing patterns of bacterial symbiont variation in an urban to rural gradient.
Collapse
Affiliation(s)
- Alison White
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Madison Giannetto
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Lubna Mulla
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Amber Del Rosario
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Tammy Lim
- East Bay Regional Parks, Oakland, CA 94605, United States
| | - Edward Culver
- East Bay Regional Parks, Oakland, CA 94605, United States
| | - Matthew Timmer
- Land Trust of Santa Cruz County, Santa Cruz, CA 95060, United States
| | - Jessie Bushell
- San Francisco Zoo and Gardens, San Francisco, CA 94132, United States
| | - Max R Lambert
- Washington Department of Fish and Wildlife, Olympia, WA 98501, United States
| | - Obed Hernández-Gómez
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| |
Collapse
|
8
|
Wei N, Tan J. Environment and Host Genetics Influence the Biogeography of Plant Microbiome Structure. MICROBIAL ECOLOGY 2023; 86:2858-2868. [PMID: 37610498 DOI: 10.1007/s00248-023-02288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities.
Collapse
Affiliation(s)
- Na Wei
- The Holden Arboretum, Kirtland, OH, 44094, USA.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisianan State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Anneberg TJ, Turcotte MM, Ashman TL. Plant neopolyploidy and genetic background differentiate the microbiome of duckweed across a variety of natural freshwater sources. Mol Ecol 2023; 32:5849-5863. [PMID: 37750335 DOI: 10.1111/mec.17142] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
Whole-genome duplication has long been appreciated for its role in driving phenotypic novelty in plants, often altering the way organisms interface with the abiotic environment. Only recently, however, have we begun to investigate how polyploidy influences interactions of plants with other species, despite the biotic niche being predicted as one of the main determinants of polyploid establishment. Nevertheless, we lack information about how polyploidy affects the diversity and composition of the microbial taxa that colonize plants, and whether this is genotype-dependent and repeatable across natural environments. This information is a first step towards understanding whether the microbiome contributes to polyploid establishment. We, thus, tested the immediate effect of polyploidy on the diversity and composition of the bacterial microbiome of the aquatic plant Spirodela polyrhiza using four pairs of diploids and synthetic autotetraploids. Under controlled conditions, axenic plants were inoculated with pond waters collected from 10 field sites across a broad environmental gradient. Autotetraploids hosted 4%-11% greater bacterial taxonomic and phylogenetic diversity than their diploid progenitors. Polyploidy, along with its interactions with the inoculum source and genetic lineage, collectively explained 7% of the total variation in microbiome composition. Furthermore, polyploidy broadened the core microbiome, with autotetraploids having 15 unique bacterial taxa in addition to the 55 they shared with diploids. Our results show that whole-genome duplication directly leads to novelty in the plant microbiome and importantly that the effect is dependent on the genetic ancestry of the polyploid and generalizable over many environmental contexts.
Collapse
Affiliation(s)
- Thomas J Anneberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Jewell MD, van Moorsel SJ, Bell G. Presence of microbiome decreases fitness and modifies phenotype in the aquatic plant Lemna minor. AOB PLANTS 2023; 15:plad026. [PMID: 37426173 PMCID: PMC10327544 DOI: 10.1093/aobpla/plad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Plants live in close association with microbial organisms that inhabit the environment in which they grow. Much recent work has aimed to characterize these plant-microbiome interactions, identifying those associations that increase growth. Although most work has focused on terrestrial plants, Lemna minor, a floating aquatic angiosperm, is increasingly used as a model in host-microbe interactions and many bacterial associations have been shown to play an important role in supporting plant fitness. However, the ubiquity and stability of these interactions as well as their dependence on specific abiotic environmental conditions remain unclear. Here, we assess the impact of a full L. minor microbiome on plant fitness and phenotype by assaying plants from eight natural sites, with and without their microbiomes, over a range of abiotic environmental conditions. We find that the microbiome systematically suppressed plant fitness, although the magnitude of this effect varied among plant genotypes and depended on the abiotic environment. Presence of the microbiome also resulted in phenotypic changes, with plants forming smaller colonies and producing smaller fronds and shorter roots. Differences in phenotype among plant genotypes were reduced when the microbiome was removed, as were genotype by environment interactions, suggesting that the microbiome plays a role in mediating the plant phenotypic response to the environment.
Collapse
Affiliation(s)
| | - Sofia J van Moorsel
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Graham Bell
- Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec H3A 1B1, Canada
- Redpath Museum, McGill University, 859 Sherbrooke St West, Montreal, Quebec H3A 0C4, Canada
| |
Collapse
|
11
|
Fan D, Schwinghamer T, Liu S, Xia O, Ge C, Chen Q, Smith DL. Characterization of endophytic bacteriome diversity and associated beneficial bacteria inhabiting a macrophyte Eichhornia crassipes. FRONTIERS IN PLANT SCIENCE 2023; 14:1176648. [PMID: 37404529 PMCID: PMC10316030 DOI: 10.3389/fpls.2023.1176648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
Introduction The endosphere of a plant is an interface containing a thriving community of endobacteria that can affect plant growth and potential for bioremediation. Eichhornia crassipes is an aquatic macrophyte, adapted to estuarine and freshwater ecosystems, which harbors a diverse bacterial community. Despite this, we currently lack a predictive understanding of how E. crassipes taxonomically structure the endobacterial community assemblies across distinct habitats (root, stem, and leaf). Methods In the present study, we assessed the endophytic bacteriome from different compartments using 16S rRNA gene sequencing analysis and verified the in vitro plant beneficial potential of isolated bacterial endophytes of E. crassipes. Results and discussion Plant compartments displayed a significant impact on the endobacterial community structures. Stem and leaf tissues were more selective, and the community exhibited a lower richness and diversity than root tissue. The taxonomic analysis of operational taxonomic units (OTUs) showed that the major phyla belonged to Proteobacteria and Actinobacteriota (> 80% in total). The most abundant genera in the sampled endosphere was Delftia in both stem and leaf samples. Members of the family Rhizobiaceae, such as in both stem and leaf samples. Members of the family Rhizobiaceae, such as Allorhizobium- Neorhizobium-Pararhizobium-Rhizobium were mainly associated with leaf tissue, whereas the genera Nannocystis and Nitrospira from the families Nannocystaceae and Nitrospiraceae, respectively, were statistically significantly associated with root tissue. Piscinibacter and Steroidobacter were putative keystone taxa of stem tissue. Most of the endophytic bacteria isolated from E. crassipes showed in vitro plant beneficial effects known to stimulate plant growth and induce plant resistance to stresses. This study provides new insights into the distribution and interaction of endobacteria across different compartments of E. crassipes Future study of endobacterial communities, using both culture-dependent and -independent techniques, will explore the mechanisms underlying the wide-spread adaptability of E. crassipesto various ecosystems and contribute to the development of efficient bacterial consortia for bioremediation and plant growth promotion.
Collapse
Affiliation(s)
- Di Fan
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Timothy Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shuaitong Liu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Ouyuan Xia
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chunmei Ge
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Qun Chen
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Donald L. Smith
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
12
|
Friedjung Yosef A, Ghazaryan L, Klamann L, Kaufman KS, Baubin C, Poodiack B, Ran N, Gabay T, Didi-Cohen S, Bog M, Khozin-Goldberg I, Gillor O. Diversity and Differentiation of Duckweed Species from Israel. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233326. [PMID: 36501368 PMCID: PMC9736646 DOI: 10.3390/plants11233326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae) are tiny plants that float on aquatic surfaces and are typically isolated from temperate and equatorial regions. Yet, duckweed diversity in Mediterranean and arid regions has been seldom explored. To address this gap in knowledge, we surveyed duckweed diversity in Israel, an ecological junction between Mediterranean and arid climates. We searched for duckweeds in the north and center of Israel on the surface of streams, ponds and waterholes. We collected and isolated 27 duckweeds and characterized their morphology, molecular barcodes (atpF-atpH and psbK-psbI) and biochemical features (protein content and fatty acids composition). Six species were identified-Lemna minor, L. gibba and Wolffia arrhiza dominated the duckweed populations, and together with past sightings, are suggested to be native to Israel. The fatty acid profiles and protein content further suggest that diverged functions have attributed to different haplotypes among the identified species. Spirodela polyrhiza, W. globosa and L. minuta were also identified but were rarer. S. polyrhiza was previously reported in our region, thus, its current low abundance should be revisited. However, L. minuta and W. globosa are native to America and Far East Asia, respectively, and are invasive in Europe. We hypothesize that they may be invasive species to our region as well, carried by migratory birds that disperse them through their migration routes. This study indicates that the duckweed population in Israel's aquatic environments consists of both native and transient species.
Collapse
Affiliation(s)
- Avital Friedjung Yosef
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Lusine Ghazaryan
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Linda Klamann
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Katherine Sarah Kaufman
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Capucine Baubin
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ben Poodiack
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Noya Ran
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Talia Gabay
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Shoshana Didi-Cohen
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
13
|
Bunyoo C, Roongsattham P, Khumwan S, Phonmakham J, Wonnapinij P, Thamchaipenet A. Dynamic Alteration of Microbial Communities of Duckweeds from Nature to Nutrient-Deficient Condition. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212915. [PMID: 36365369 PMCID: PMC9658847 DOI: 10.3390/plants11212915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Duckweeds live with complex assemblages of microbes as holobionts that play an important role in duckweed growth and phytoremediation ability. In this study, the structure and diversity of duckweed-associated bacteria (DAB) among four duckweed subtypes under natural and nutrient-deficient conditions were investigated using V3-V4 16S rRNA amplicon sequencing. High throughput sequencing analysis indicated that phylum Proteobacteria was predominant in across duckweed samples. A total of 24 microbial genera were identified as a core microbiome that presented in high abundance with consistent proportions across all duckweed subtypes. The most abundant microbes belonged to the genus Rhodobacter, followed by other common DAB, including Acinetobacter, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Pseudomonas. After nutrient-deficient stress, diversity of microbial communities was significantly deceased. However, the relative abundance of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pelomonas, Roseateles and Novosphingobium were significantly enhanced in stressed duckweeds. Functional prediction of the metagenome data displayed the relative abundance of essential pathways involved in DAB colonization, such as bacterial motility and biofilm formation, as well as biodegradable ability, such as benzoate degradation and nitrogen metabolism, were significantly enriched under stress condition. The findings improve the understanding of the complexity of duckweed microbiomes and facilitate the establishment of a stable microbiome used for co-cultivation with duckweeds for enhancement of biomass and phytoremediation under environmental stress.
Collapse
Affiliation(s)
- Chakrit Bunyoo
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Peerapat Roongsattham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Sirikorn Khumwan
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Juthaporn Phonmakham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
14
|
Kose T, Lins TF, Wang J, O’brien AM, Sinton D, Frederickson ME. Accelerated High-throughput Plant Imaging and Phenotyping System.. [DOI: 10.1101/2022.09.28.509964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe complex web of interactions in biological communities is an area of study that requires large multifactorial experiments with sufficient statistical power. The use of automated tools can reduce the time and labor associated with experiment setup, data collection, and analysis in experiments aimed at untangling these webs. Here we demonstrate tools for high-throughput experimentation (HTE) in duckweeds, small aquatic plants that are amenable to autonomous experimental preparation and image-based phenotyping. We showcase the abilities of our HTE system in a study with 6,000 experimental units grown across 1,000 different nutrient environments. The use of our automated tools facilitated the collection and analysis of time-resolved growth data, which revealed finer dynamics of plant-microbe interactions across environmental gradients. Altogether, our HTE system can run experiments of up to 11,520 experimental units and can be adapted to studies with other small organisms.
Collapse
|
15
|
Yang GL, Zheng MM, Liao HM, Tan AJ, Feng D, Lv SM. Influence of cadmium and microplastics on physiological responses, ultrastructure and rhizosphere microbial community of duckweed. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114011. [PMID: 36007321 DOI: 10.1016/j.ecoenv.2022.114011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The combined contamination of heavy metals and microplastics is widespread in freshwater environments. However, there are few researches on their combined effects on aquatic plants. In this study, the effects of single and combined stress of 0.01 mg L-1 cadmium (Cd), 50 mg L-1 polyethylene and 50 mg L-1 polypropylene for 15 days on the physiological response, ultrastructure and rhizosphere microbial community of duckweed were investigated. The results showed that Cd and microplastics single or combined stress inhibited the growth of duckweed, shortened the root length and decreased the chlorophyll content. Compared with single Cd treatments, the combination of microplastics and Cd increased duckweed growth rate and increased superoxide dismutase activity and malondialdehyde content and reduced chloroplast structural damage, indicating that the combined stress could reduce the toxicity of heavy metals to duckweed. Through the study of rhizosphere microbial diversity, 1381 Operational Taxonomic Unit (OTUs) were identified and rich microbial communities were detected in the duckweed rhizosphere. Among them, the main microbial communities were Proteobacteria, Bacteroidetes, and Cyanobacteria. Compared with Cd single stress, the ACE and chao index of rhizosphere microbial community increased under combined stress, indicating that the diversity and abundance of microbial communities were improved after combined stress treatment. Our study revealed the effects of heavy metals and microplastics on aquatic plants, providing a theoretical basis for duckweed applications in complex water pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| | - Meng-Meng Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hai-Min Liao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 50025, Guizhou Province, China
| |
Collapse
|
16
|
Wuerthner VP, Hua J, Hernández‐Gómez O. Life stage and proximity to roads shape the skin microbiota of eastern newts (Notophthalmus viridescens). Environ Microbiol 2022; 24:3954-3965. [PMID: 35355399 PMCID: PMC9790580 DOI: 10.1111/1462-2920.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Host-associated microbiomes play an essential role in the health of organisms, including immune system activation, metabolism and energy uptake. It is well established that microbial communities differ depending on the life stage and natural history of the organism. However, the effects of life stage and natural history on microbial communities may also be influenced by human activities. We investigated the effects of amphibian life stage (terrestrial eft vs. aquatic adult) and proximity to roadways on newt skin bacterial communities. We found that the eft and adult life stages differed in bacterial community composition; however, the effects of roads on community composition were more evident in the terrestrial eft stage compared to the aquatic adult stage. Terrestrial efts sampled close to roads possessed richer communities than those living further away from the influence of roads. When accounting for amplicon sequence variants with predicted antifungal capabilities, in the adult life stage, we observed a decrease in anti-fungal bacteria with distance to roads. In contrast, in the eft stage, we found an increase in anti-fungal bacteria with distance to roads. Our results highlight the need to consider the effects of human activities when evaluating how host-associated microbiomes differ across life stages of wildlife.
Collapse
Affiliation(s)
| | - Jessica Hua
- Department of Biological SciencesBinghamton UniversityBinghamtonNY,Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI
| | - Obed Hernández‐Gómez
- Department of Environmental Sciences, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCA,Department of Natural Sciences and MathematicsDominican University of CaliforniaSan RafaelCA
| |
Collapse
|
17
|
Cox KL, Manchego J, Meyers BC, Czymmek KJ, Harkess A. Automated imaging of duckweed growth and development. PLANT DIRECT 2022; 6:e439. [PMID: 36186894 PMCID: PMC9510441 DOI: 10.1002/pld3.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/20/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Duckweeds are the smallest angiosperms, possessing a simple body architecture and highest rates of biomass accumulation. They can grow near-exponentially via clonal propagation. Understanding their reproductive biology, growth, and development is essential to unlock their potential for phytoremediation, carbon capture, and nutrition. However, there is a lack of non-laborious and convenient methods for spatially and temporally imaging an array of duckweed plants and growth conditions in the same experiment. We developed an automated microscopy approach to record time-lapse images of duckweed plants growing in 12-well cell culture plates. As a proof-of-concept experiment, we grew duckweed on semi-solid media with and without sucrose and monitored its effect on their growth over 3 days. Using the PlantCV toolkit, we quantified the thallus area of individual plantlets over time, and showed that L. minor grown on sucrose had an average growth rate four times higher than without sucrose. This method will serve as a blueprint to perform automated high-throughput growth assays for studying the development patterns of duckweeds from different species, genotypes, and conditions.
Collapse
Affiliation(s)
- Kevin L. Cox
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | | | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Department of BiologyUniversity of MissouriColumbiaMissouriUSA
| | | | - Alex Harkess
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
18
|
O'Brien AM, Lins TF, Yang Y, Frederickson ME, Sinton D, Rochman CM. Microplastics shift impacts of climate change on a plant-microbe mutualism: Temperature, CO 2, and tire wear particles. ENVIRONMENTAL RESEARCH 2022; 203:111727. [PMID: 34339696 DOI: 10.1016/j.envres.2021.111727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic stressors can affect individual species and alter species interactions. Moreover, species interactions or the presence of multiple stressors can modify the stressor effects, yet most work focuses on single stressors and single species. Plant-microbe interactions are a class of species interactions on which ecosystems and agricultural systems depend, yet may be affected by multiple global change stressors. Here, we use duckweed and microbes from its microbiome to model responses of interacting plants and microbes to multiple stressors: climate change and tire wear particles. Climate change is occurring globally, and microplastic tire wear particles from roads now reach many ecosystems. We paired perpendicular gradients of temperature and carbon dioxide (CO2) treatments with factorial manipulation of leachate from tire wear particles and duckweed microbiomes. We found that tire leachate and warmer temperatures enhanced duckweed and microbial growth, but caused effects of microbes on duckweed to become negative. However, induced negative effects of microbes were less than additive with warming and leachate. Without tire leachate, we observed that higher CO2 and temperature induced positive correlations between duckweed and microbial growth, which can strengthen mutualisms. In contrast, with tire leachate, growth correlations were never positive, and shifted negative at lower CO2, again suggesting leachate disrupts this plant-microbiome mutualism. In summary, our results demonstrate that multiple interacting stressors can affect multiple interacting species, and that leachate from tire wear particles could potentially disrupt plant-microbe mutualisms.
Collapse
Affiliation(s)
- Anna M O'Brien
- Dept. of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S 3B2, Ontario, Canada; Dept. of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada.
| | - Tiago F Lins
- Dept. of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Yamin Yang
- Dept. of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Megan E Frederickson
- Dept. of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S 3B2, Ontario, Canada
| | - David Sinton
- Dept. of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Chelsea M Rochman
- Dept. of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S 3B2, Ontario, Canada
| |
Collapse
|
19
|
Baucom RS, Heath KD, Chambers SM. Plant-environment interactions from the lens of plant stress, reproduction, and mutualisms. AMERICAN JOURNAL OF BOTANY 2020; 107:175-178. [PMID: 32060910 PMCID: PMC7186814 DOI: 10.1002/ajb2.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 05/06/2023]
Affiliation(s)
- Regina S. Baucom
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Katy D. Heath
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | | |
Collapse
|