1
|
Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, Koch MA, Lysak MA, Toro-Núñez Ó, Özüdoğru B, Invernón VR, Walden N, Maurin O, Hay NM, Shushkov P, Mandáková T, Schranz ME, Thulin M, Windham MD, Rešetnik I, Španiel S, Ly E, Pires JC, Harkess A, Neuffer B, Vogt R, Bräuchler C, Rainer H, Janssens SB, Schmull M, Forrest A, Guggisberg A, Zmarzty S, Lepschi BJ, Scarlett N, Stauffer FW, Schönberger I, Heenan P, Baker WJ, Forest F, Mummenhoff K, Lens F. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr Biol 2023; 33:4052-4068.e6. [PMID: 37659415 DOI: 10.1016/j.cub.2023.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
Collapse
Affiliation(s)
- Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany; Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands.
| | - Christiane Kiefer
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, USA
| | - Alex Hooft van Huysduynen
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, University of California, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
| | | | - Dmitry A German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Lesosechnaya Ulitsa, 25, Barnaul, Altai Krai, Russia
| | - Andreas Franzke
- Heidelberg Botanic Garden, Heidelberg University, Im Neuenheimer Feld 361, 69120 Heidelberg, Germany
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Óscar Toro-Núñez
- Departamento de Botánica, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Barış Özüdoğru
- Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Türkiye
| | - Vanessa R Invernón
- Sorbonne Université, Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité (ISYEB), CP 39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Nora Walden
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Nikolai M Hay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Philip Shushkov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mats Thulin
- Department of Organismal Biology, Uppsala University, Norbyvägen 18, 752 36 Uppsala, Sweden
| | | | - Ivana Rešetnik
- Department of Biology, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia
| | - Stanislav Španiel
- Institute of Botany, Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Dúbravská cesta 9, 845 23 Bratislava, Slovakia
| | - Elfy Ly
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO 80523-1170, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Barbara Neuffer
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Robert Vogt
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Christian Bräuchler
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Heimo Rainer
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Steven B Janssens
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31 - box 2435, 3001 Leuven, Belgium; Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Michaela Schmull
- Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Alessia Guggisberg
- ETH Zürich, Institut für Integrative Biologie, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Sue Zmarzty
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Brendan J Lepschi
- Australian National Herbarium, Centre for Australian National Biodiversity Research, Clunies Ross St, Acton, ACT 2601, Australia
| | - Neville Scarlett
- La Trobe University, Plenty Road and Kingsbury Dr., Bundoora, VIC 3086, Australia
| | - Fred W Stauffer
- Conservatory and Botanic Gardens of Geneva, CP 60, Chambésy, 1292 Geneva, Switzerland
| | - Ines Schönberger
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | - Peter Heenan
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Frederic Lens
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
2
|
Farhat P, Mandáková T, Divíšek J, Kudoh H, German DA, Lysak MA. The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella. FRONTIERS IN PLANT SCIENCE 2023; 14:1165140. [PMID: 37223809 PMCID: PMC10200890 DOI: 10.3389/fpls.2023.1165140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 05/25/2023]
Abstract
The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.
Collapse
Affiliation(s)
- Perla Farhat
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Dmitry A. German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Russia
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
German DA, Hendriks KP, Koch MA, Lens F, Lysak MA, Bailey CD, Mummenhoff K, Al-Shehbaz IA. An updated classification of the Brassicaceae (Cruciferae). PHYTOKEYS 2023; 220:127-144. [PMID: 37251613 PMCID: PMC10209616 DOI: 10.3897/phytokeys.220.97724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.
Collapse
Affiliation(s)
- Dmitry A. German
- South-Siberian Botanical Garden, Altai State University, Lenin Ave. 61, 656049 Barnaul, RussiaAltai State UniversityBarnaulRussia
| | - Kasper P. Hendriks
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, GermanyUniversity of OsnabrückOsnabrückGermany
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Marcus A. Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, GermanyHeidelberg UniversityHeidelbergGermany
| | - Frederic Lens
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, NetherlandsLeiden UniversityLeidenNetherlands
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech RepublicMasaryk UniversityBrnoCzech Republic
| | - C. Donovan Bailey
- Department of Biology, New Mexico State University, P.O. Box 30001 MSC 3AF, Las Cruces, NM 88003, USANew Mexico State UniversityLas CrucesUnited States of America
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, GermanyUniversity of OsnabrückOsnabrückGermany
| | - Ihsan A. Al-Shehbaz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, Missouri 63110, USAMissouri Botanical GardenSt. LouisUnited States of America
| |
Collapse
|