1
|
Nicol DA, Saldivia P, Summerfield TC, Heads M, Lord JM, Khaing EP, Larcombe MJ. Phylogenomics and morphology of Celmisiinae (Asteraceae: Astereae): Taxonomic and evolutionary implications. Mol Phylogenet Evol 2024; 195:108064. [PMID: 38508479 DOI: 10.1016/j.ympev.2024.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
The tribe Astereae (Asteraceae) includes 36 subtribes and 252 genera, and is distributed worldwide in temperate and tropical regions. One of the subtribes, Celmisiinae Saldivia, has been recently circumscribed to include six genera and ca. 160 species, and is restricted to eastern Australia, New Zealand, and New Guinea. The species show an impressive range of growth habit, from small herbs and ericoid subshrubs to medium-sized trees. They live in a wide range of habitats and are often dominant in subalpine and alpine vegetation. Despite the well-supported circumscription of Celmisiinae, uncertainties have remained about their internal relationships and classification at genus and species levels. This study exploited recent advances in high-throughput sequencing to build a robust multi-gene phylogeny for the subtribe Celmisiinae. The target enrichment Angiosperms353 bait set and the hybpiper-nf and paragone-nf pipelines were used to retrieve, infer, and assemble orthologous loci from 75 taxa representing all the main putative clades within the subtribe. Because of the diploidised ploidy level in Celmisiinae, as well as missing data in the assemblies, uncertainty remains surrounding the inference of orthology detection. However, based on a variety of gene-family sets, coalescent and concatenation-based phylogenetic reconstructions recovered similar topologies. Paralogy and missing data in the gene-families caused some problems, but the estimated phylogenies were well-supported and well-resolved. The phylogenomic evidence supported Celmisiinae and three main clades: the Pleurophyllum clade (Pleurophyllum, Macrolearia and Damnamenia), mostly in the New Zealand Subantarctic Islands, Celmisia of mainland New Zealand and Australia, and Shawia (including 'Olearia pro parte' and Pachystegia) of New Zealand, Australia and New Guinea. The results presented here add to the accumulating support for the Angiosperms353 bait set as an efficient method for documenting plant diversity.
Collapse
Affiliation(s)
- Duncan A Nicol
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - Patricio Saldivia
- Biota Ltda. Av. Miguel Claro 1224, Providencia, Santiago, Chile; Museo Regional de Aysén, Km 3 Camino a Coyhaique Alto, Coyhaique, Chile
| | - Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Michael Heads
- Buffalo Museum of Science, Buffalo, NY 14211-1293, USA
| | - Janice M Lord
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Ei P Khaing
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
2
|
Wang L, Zhang S, Li H, Wang S. The complete plastome and phylogenetic analysis of Commelina benghalensis L.1753 (Commelinaceae). Mitochondrial DNA B Resour 2024; 9:610-615. [PMID: 38737392 PMCID: PMC11086016 DOI: 10.1080/23802359.2024.2347508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
Commelina benghalensis L. 1753, a member of the Commelinaceae family, holds significant medicinal and culinary value. This study represents the first documentation of the sequencing and assembly of the entire plastome of C. benghalensis. The genome spans a total length of 160,663 bp, exhibiting a conventional quadripartite architecture that comprises a large single-copy (LSC) region (87,750 bp), a small single-copy (SSC) region (18,417 bp), and two inverted repeats (IR) regions (both 27,248 bp). In its entirety, the C. benghalensis plastome encompasses 129 genes (with 108 being unique), incorporating 77 individual protein-coding genes, 37 unique tRNA genes, and four unique rRNA genes. Phylogenetic analysis revealed a close resemblance between C. benghalensis and C. communis. The sequencing of this plastome stands to expedite the development of molecular markers and significantly contribute to genetic assays involving this distinctive plant.
Collapse
Affiliation(s)
- Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Shuming Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Hongqin Li
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Shu Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| |
Collapse
|
3
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
4
|
Liu L, Chen M, Folk RA, Wang M, Zhao T, Shang F, Soltis DE, Li P. Phylogenomic and syntenic data demonstrate complex evolutionary processes in early radiation of the rosids. Mol Ecol Resour 2023; 23:1673-1688. [PMID: 37449554 DOI: 10.1111/1755-0998.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Some of the most vexing problems of deep level relationship that remain in angiosperms involve the superrosids. The superrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales, Saxifragales and core rosids) exhibiting remarkable morphological and ecological diversity. To help resolve deep-level relationships, we constructed a high-quality chromosome-level genome assembly for Tiarella polyphylla (Saxifragaceae) thus providing broader genomic representation of Saxifragales. Whole genome microsynteny analysis of superrosids showed that Saxifragales shared more synteny clusters with core rosids than Vitales, further supporting Saxifragales as more closely related with core rosids. To resolve the ordinal phylogeny of superrosids, we screened 122 single copy nuclear genes from genomes of 36 species, representing all 18 superrosid orders. Vitales were recovered as sister to all other superrosids (Saxifragales + core rosids). Our data suggest dramatic differences in relationships compared to earlier studies within core rosids. Fabids should be restricted to the nitrogen-fixing clade, while Picramniales, the Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales and Brassicales formed an "expanded" malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG IV) was not monophyletic. Crossosomatales, Geraniales, Myrtales and Zygophyllales did not belong to either of our well-supported malvids or fabids. There is strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relationships; we show that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.
Collapse
Affiliation(s)
- Luxian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengzhen Chen
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Meizhen Wang
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fude Shang
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, Henan, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
6
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
7
|
Timilsena PR, Wafula EK, Barrett CF, Ayyampalayam S, McNeal JR, Rentsch JD, McKain MR, Heyduk K, Harkess A, Villegente M, Conran JG, Illing N, Fogliani B, Ané C, Pires JC, Davis JI, Zomlefer WB, Stevenson DW, Graham SW, Givnish TJ, Leebens-Mack J, dePamphilis CW. Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes. FRONTIERS IN PLANT SCIENCE 2022; 13:876779. [PMID: 36483967 PMCID: PMC9723157 DOI: 10.3389/fpls.2022.876779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree. Within orders, around six of 72 families shifted positions relative to the recent plastome analysis, but four of these involve poorly supported inferred relationships in the plastome-based tree. In Poales, the nuclear data place a clade comprising Ecdeiocoleaceae+Joinvilleaceae as sister to the grasses (Poaceae); Typhaceae, (rather than Bromeliaceae) are resolved as sister to all other Poales. In Commelinales, nuclear data place Philydraceae sister to all other families rather than to a clade comprising Haemodoraceae+Pontederiaceae as seen in the plastome tree. In Liliales, nuclear data place Liliaceae sister to Smilacaceae, and Melanthiaceae are placed sister to all other Liliales except Campynemataceae. Finally, in Alismatales, nuclear data strongly place Tofieldiaceae, rather than Araceae, as sister to all the other families, providing an alternative resolution of what has been the most problematic node to resolve using plastid data, outside of those involving achlorophyllous mycoheterotrophs. As seen in numerous prior studies, the placement of orders Acorales and Alismatales as successive sister lineages to all other extant monocots. Only 21.2% of BUSCO genes were demonstrably single-copy, yet phylogenomic inferences based on BUSCO and CSC genes did not differ, and overall functional annotations of the two sets were very similar. Our analyses also reveal significant gene tree-species tree discordance despite high support values, as expected given incomplete lineage sorting (ILS) related to rapid diversification. Our study advances understanding of monocot relationships and the robustness of phylogenetic inferences based on large numbers of nuclear single-copy genes that can be obtained from transcriptomes and genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Eric K. Wafula
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Saravanaraj Ayyampalayam
- Georgia Advanced Computing Resource Center, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Joel R. McNeal
- Department of Ecology, Evolution, and Organismal Biology, Biology Kennesaw State University, Kennesaw, GA, United States
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC, United States
| | - Michael R. McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Karolina Heyduk
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Matthieu Villegente
- Institut des Sciences Exactes et Appliquees (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - John G. Conran
- Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquees (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Department of Statistics, University of Wisconsin–Madison, Madison, WI, United States
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jerrold I. Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Wendy B. Zomlefer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | | | | | - Thomas J. Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Claude W. dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
8
|
Simões ARG, Eserman LA, Zuntini AR, Chatrou LW, Utteridge TMA, Maurin O, Rokni S, Roy S, Forest F, Baker WJ, Stefanović S. A Bird's Eye View of the Systematics of Convolvulaceae: Novel Insights From Nuclear Genomic Data. FRONTIERS IN PLANT SCIENCE 2022; 13:889988. [PMID: 35909765 PMCID: PMC9331175 DOI: 10.3389/fpls.2022.889988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Convolvulaceae is a family of c. 2,000 species, distributed across 60 currently recognized genera. It includes species of high economic importance, such as the crop sweet potato (Ipomoea batatas L.), the ornamental morning glories (Ipomoea L.), bindweeds (Convolvulus L.), and dodders, the parasitic vines (Cuscuta L.). Earlier phylogenetic studies, based predominantly on chloroplast markers or a single nuclear region, have provided a framework for systematic studies of the family, but uncertainty remains at the level of the relationships among subfamilies, tribes, and genera, hindering evolutionary inferences and taxonomic advances. One of the enduring enigmas has been the relationship of Cuscuta to the rest of Convolvulaceae. Other examples of unresolved issues include the monophyly and relationships within Merremieae, the "bifid-style" clade (Dicranostyloideae), as well as the relative positions of Erycibe Roxb. and Cardiochlamyeae. In this study, we explore a large dataset of nuclear genes generated using Angiosperms353 kit, as a contribution to resolving some of these remaining phylogenetic uncertainties within Convolvulaceae. For the first time, a strongly supported backbone of the family is provided. Cuscuta is confirmed to belong within family Convolvulaceae. "Merremieae," in their former tribal circumscription, are recovered as non-monophyletic, with the unexpected placement of Distimake Raf. as sister to the clade that contains Ipomoeeae and Decalobanthus Ooststr., and Convolvuleae nested within the remaining "Merremieae." The monophyly of Dicranostyloideae, including Jacquemontia Choisy, is strongly supported, albeit novel relationships between genera are hypothesized, challenging the current tribal delimitation. The exact placements of Erycibe and Cuscuta remain uncertain, requiring further investigation. Our study explores the benefits and limitations of increasing sequence data in resolving higher-level relationships within Convolvulaceae, and highlights the need for expanded taxonomic sampling, to facilitate a much-needed revised classification of the family.
Collapse
Affiliation(s)
| | - Lauren A. Eserman
- Conservation & Research Department, Atlanta Botanical Garden, Atlanta, GA, United States
| | | | - Lars W. Chatrou
- Systematic and Evolutionary Botany Lab, University of Ghent, Ghent, Belgium
| | | | | | - Saba Rokni
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
9
|
Acha S, Majure LC. A New Approach Using Targeted Sequence Capture for Phylogenomic Studies across Cactaceae. Genes (Basel) 2022; 13:genes13020350. [PMID: 35205394 PMCID: PMC8871817 DOI: 10.3390/genes13020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Relationships within the major clades of Cactaceae are relatively well known based on DNA sequence data mostly from the chloroplast genome. Nevertheless, some nodes along the backbone of the phylogeny, and especially generic and species-level relationships, remain poorly resolved and are in need of more informative genetic markers. In this study, we propose a new approach to solve the relationships within Cactaceae, applying a targeted sequence capture pipeline. We designed a custom probe set for Cactaceae using MarkerMiner and complemented it with the Angiosperms353 probe set. We then tested both probe sets against 36 different transcriptomes using Hybpiper preferentially retaining phylogenetically informative loci and reconstructed the relationships using RAxML-NG and Astral. Finally, we tested each probe set through sequencing 96 accessions, representing 88 species across Cactaceae. Our preliminary analyses recovered a well-supported phylogeny across Cactaceae with a near identical topology among major clade relationships as that recovered with plastome data. As expected, however, we found incongruences in relationships when comparing our nuclear probe set results to plastome datasets, especially at the generic level. Our results reveal great potential for the combination of Cactaceae-specific and Angiosperm353 probe set application to improve phylogenetic resolution for Cactaceae and for other studies.
Collapse
|
10
|
Antonelli A, Clarkson JJ, Kainulainen K, Maurin O, Brewer GE, Davis AP, Epitawalage N, Goyder DJ, Livshultz T, Persson C, Pokorny L, Straub SCK, Struwe L, Zuntini AR, Forest F, Baker WJ. Settling a family feud: a high-level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial plastomes. AMERICAN JOURNAL OF BOTANY 2021; 108:1143-1165. [PMID: 34254285 DOI: 10.1002/ajb2.1697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Comprising five families that vastly differ in species richness-ranging from Gelsemiaceae with 13 species to the Rubiaceae with 13,775 species-members of the Gentianales are often among the most species-rich and abundant plants in tropical forests. Despite considerable phylogenetic work within particular families and genera, several alternative topologies for family-level relationships within Gentianales have been presented in previous studies. METHODS Here we present a phylogenomic analysis based on nuclear genes targeted by the Angiosperms353 probe set for approximately 150 species, representing all families and approximately 85% of the formally recognized tribes. We were able to retrieve partial plastomes from off-target reads for most taxa and infer phylogenetic trees for comparison with the nuclear-derived trees. RESULTS We recovered high support for over 80% of all nodes. The plastid and nuclear data are largely in agreement, except for some weakly to moderately supported relationships. We discuss the implications of our results for the order's classification, highlighting points of increased support for previously uncertain relationships. Rubiaceae is sister to a clade comprising (Gentianaceae + Gelsemiaceae) + (Apocynaceae + Loganiaceae). CONCLUSIONS The higher-level phylogenetic relationships within Gentianales are confidently resolved. In contrast to recent studies, our results support the division of Rubiaceae into two subfamilies: Cinchonoideae and Rubioideae. We do not formally recognize Coptosapelteae and Luculieae within any particular subfamily but treat them as incertae sedis. Our framework paves the way for further work on the phylogenetics, biogeography, morphological evolution, and macroecology of this important group of flowering plants.
Collapse
Affiliation(s)
- Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Kent Kainulainen
- Gothenburg Botanical Garden, Carl Skottsbergs gata 22 A, Gothenburg, 413 19, Sweden
| | | | | | | | | | | | - Tatyana Livshultz
- Department of Biodiversity Earth and Environmental Sciences and Academy of Natural Sciences, Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103, USA
| | - Claes Persson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | | | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY, 14456, USA
| | - Lena Struwe
- Department of Ecology, Evolution, and Natural Resources & Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | | | | | | |
Collapse
|
11
|
Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, McDonnell A, Pokorny L, Tate JA, Wicke S, Wickett NJ. Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. AMERICAN JOURNAL OF BOTANY 2021; 108:1059-1065. [PMID: 34293179 DOI: 10.1002/ajb2.1703] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, University Square, Luton, LU1 3JU, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Angela McDonnell
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Jennifer A Tate
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Susann Wicke
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norman J Wickett
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| |
Collapse
|
12
|
Slimp M, Williams LD, Hale H, Johnson MG. On the potential of Angiosperms353 for population genomic studies. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311419. [PMID: 34336401 PMCID: PMC8312745 DOI: 10.1002/aps3.11419] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 05/11/2023]
Abstract
PREMISE The successful application of universal targeted sequencing markers, such as those developed for the Angiosperms353 probe set, within populations could reduce or eliminate the need for specific marker development, while retaining the benefits of full-gene sequences in population-level analyses. However, whether the Angiosperms353 markers provide sufficient variation within species to calculate demographic parameters is untested. METHODS Using herbarium specimens from a 50-year-old floristic survey in Texas, we sequenced 95 samples from 24 species using the Angiosperms353 probe set. Our data workflow calls variants within species and prepares data for population genetic analysis using standard metrics. In our case study, gene recovery was affected by genomic library concentration only at low concentrations and displayed limited phylogenetic bias. RESULTS We identified over 1000 segregating variants with zero missing data for 92% of species and demonstrate that Angiosperms353 markers contain sufficient variation to estimate pairwise nucleotide diversity (π)-typically between 0.002 and 0.010, with most variation found in flanking non-coding regions. In a subset of variants that were filtered to reduce linkage, we uncovered high heterozygosity in many species, suggesting that denser sampling within species should permit estimation of gene flow and population dynamics. DISCUSSION Angiosperms353 should benefit conservation genetic studies by providing universal repeatable markers, low missing data, and haplotype information, while permitting inclusion of decades-old herbarium specimens.
Collapse
Affiliation(s)
- Madeline Slimp
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| | - Lindsay D. Williams
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| | - Haley Hale
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech University2901 Main StreetLubbockTexas79409USA
| |
Collapse
|
13
|
Maurin O, Anest A, Bellot S, Biffin E, Brewer G, Charles-Dominique T, Cowan RS, Dodsworth S, Epitawalage N, Gallego B, Giaretta A, Goldenberg R, Gonçalves DJP, Graham S, Hoch P, Mazine F, Low YW, McGinnie C, Michelangeli FA, Morris S, Penneys DS, Pérez Escobar OA, Pillon Y, Pokorny L, Shimizu G, Staggemeier VG, Thornhill AH, Tomlinson KW, Turner IM, Vasconcelos T, Wilson PG, Zuntini AR, Baker WJ, Forest F, Lucas E. A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. AMERICAN JOURNAL OF BOTANY 2021; 108:1087-1111. [PMID: 34297852 DOI: 10.1002/ajb2.1699] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.
Collapse
Affiliation(s)
- Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Artemis Anest
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sidonie Bellot
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Edward Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, PO Box 1047, Adelaide, South Australia, 5001, Australia
| | - Grace Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Tristan Charles-Dominique
- Centre National de la Recherche Scientifique (CNRS), Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | - Robyn S Cowan
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, University Square, Luton, LU1 3JU, UK
| | | | - Berta Gallego
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Augusto Giaretta
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil
| | - Renato Goldenberg
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Peter Hoch
- Missouri Botanical Garden, St. Louis, MO, 63110, USA
| | - Fiorella Mazine
- Departamento de Ciências Ambientais, Centro de Ciências e Tecnologias para a Sustentabilidade, Universidade Federal de São Carlos - campus Sorocaba, Sorocaba, SP, 18052-780, Brazil
| | - Yee Wen Low
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | | | - Fabián A Michelangeli
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY, 10458-5126, USA
| | - Sarah Morris
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Darin S Penneys
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | | | - Yohan Pillon
- LSTM, IRD, INRAE, CIRAD, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Centre for Plant Biotechnology and Genomics (CBGP UPM - INIA), Autopista M-40, Km 38, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Gustavo Shimizu
- Department of Plant Biology, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Vanessa G Staggemeier
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Andrew H Thornhill
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, PO Box 1047, Adelaide, South Australia, 5001, Australia
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Ian M Turner
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore
- Singapore Botanical Liaison Officer, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Peter G Wilson
- Royal Botanic Gardens Sydney, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | | | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Eve Lucas
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|