1
|
Meudt HM, Pearson S, Ning W, Prebble JM, Tate JA. Forget-me-not phylogenomics: Improving the resolution and taxonomy of a rapid island and mountain radiation in Aotearoa New Zealand (Myosotis; Boraginaceae). Mol Phylogenet Evol 2024:108250. [PMID: 39581357 DOI: 10.1016/j.ympev.2024.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Island and mountain systems represent natural laboratories for studies of species radiations, but they often present several challenges for phylogenetic inference and species delimitation. The southern hemisphere forget-me-nots (Myosotis, Boraginaceae) comprise a geologically recent radiation centred in New Zealand, a mountainous archipelago, with about 50 species that are morphologically and ecologically divergent but lack genetic variation sufficient to resolve phylogenetic relationships and species boundaries using standard DNA Sanger sequencing markers, AFLPs, or microsatellites. Many of these Myosotis species are geographically restricted in alpine areas, uncommon or threatened, have polyploid and dysploid genomes, and are of high taxonomic and conservation priority. Here we present phylogenomic analyses using target-capture of Angiosperms353 baits, and genome skimming of whole plastomes and nrDNA, to improve resolution of the radiation, explore biogeographic and morphological patterns within it, and address specific taxonomic questions for each species. Our comprehensive sampling includes over 300 individuals representing nearly all species from Aotearoa New Zealand and Australia, which is ∼ 2-3 × more taxon sampling and ∼ 80-120 × more molecular data than previously published for Myosotis. Exploration of different data filtering, curation and analyses (coalescent vs. concatenation) improved the resolution of the Angiosperms353 tree, which despite short backbone branches with low support values, showed taxonomic and geographic patterns, including multiple switches between ebracteate and bracteate inflorescences and multiple expansions within New Zealand from Te Waipounamu South Island to Te Ika-a-Māui North Island, Rakiura Stewart Island, subantarctic islands, and Australia. Some of these patterns were also seen in the genome skimming datasets, and comparison of the three datasets was useful for improving our understanding of the taxonomy and resolution of this radiation. Although this phylogenomic study does not fully overcome all of the challenges regarding species delimitation of this rapid island and mountain species radiation, it nevertheless makes an important contribution to an integrative taxonomic revision of the southern hemisphere species of Myosotis.
Collapse
Affiliation(s)
- Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Cable St, Wellington 6140, New Zealand.
| | - Sofie Pearson
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Cable St, Wellington 6140, New Zealand; School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Weixuan Ning
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Jessica M Prebble
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln 7640, New Zealand.
| | - Jennifer A Tate
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
2
|
de Vos JM, Streiff SJR, Bachelier JB, Epitawalage N, Maurin O, Forest F, Baker WJ. Phylogenomics of the pantropical Connaraceae: revised infrafamilial classification and the evolution of heterostyly. PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2024; 310:29. [PMID: 39105137 PMCID: PMC11297820 DOI: 10.1007/s00606-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024]
Abstract
Connaraceae is a pantropical family of about 200 species containing lianas and small trees with remarkably diverse floral polymorphisms, including distyly, tristyly, homostyly, and dioecy. To date, relationships within the family have not been investigated using a targeted molecular phylogenetic treatment, severely limiting systematic understanding and reconstruction of trait evolution. Accordingly, their last infrafamilial classification was based only on morphological data. Here, we used phylogenomic data obtained using the Angiosperms353 nuclear target sequence capture probes, sampling all tribes and almost all genera, entirely from herbarium specimens, to revise infrafamilial classification and investigate the evolution of heterostyly. The backbone of the resulting molecular phylogenetic tree is almost entirely resolved. Connaraceae consists of two clades, one containing only the African genus Manotes (4 or 5 species), which we newly recognize at the subfamily level. Vegetative and reproductive synapomorphies are proposed for Manotoideae. Within Connaroideae, Connareae is expanded to include the former Jollydoreae. The backbone of Cnestideae, which contains more than half of the Connaraceae species, remains incompletely resolved. Reconstructions of reproductive system evolution are presented that tentatively support tristyly as the ancestral state for the family, with multiple parallel losses, in agreement with previous hypotheses, plus possible re-gains. However, the great diversity of stylar polymorphisms and their phylogenetic lability preclude a definitive answer. Overall, this study reinforces the usefulness of herbarium phylogenomics, and unlocks the reproductive diversity of Connaraceae as a model system for the evolution of complex biological phenomena. Supplementary Information The online version contains supplementary material available at 10.1007/s00606-024-01909-y.
Collapse
Affiliation(s)
- Jurriaan M. de Vos
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Serafin J. R. Streiff
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- UMR DIADE, Université de Montpellier, IRD, CIRAD, 911 Avenue Agropolis, 34090 Montpellier, France
| | - Julien B. Bachelier
- Institüt für Biologie/Dahlem Centre of Plant Sciences, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
| | - Niroshini Epitawalage
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458 USA
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - William J. Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
- Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Wenzell KE, Zhang JY, Skogen KA, Fant JB. Adaptive generalization in pollination systems: Hawkmoths increase fitness to long-tubed flowers, but secondary pollinators remain important. Ecol Evol 2024; 14:e11443. [PMID: 38783846 PMCID: PMC11112297 DOI: 10.1002/ece3.11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Selection on floral traits by animal pollinators is important in the evolution of flowering plants, yet whether floral divergence requires specialized pollination remains uncertain. Longer floral tubes, a trait associated with long-tongued pollinators, can also exclude other pollinators from accessing rewards, a potential mechanism for specialization. Across most of its range, Castilleja sessiliflora displays much longer corollas than most Castilleja species, though tube length varies geographically and correlates partially with hawkmoth visitation. To assess whether long corolla tubes reflect adaptation to hawkmoth pollinators, we performed a day/night pollinator exclusion experiment in nine natural populations that varied in corolla length across the range of C. sessiliflora and short-tubed members of the parapatric C. purpurea complex. We compared the fitness contributions of nocturnal and diurnal visitors, revealing that long-tubed populations visited predominantly by hawkmoths experienced greater fruit set at night, in contrast with short-tubed populations or those visited mainly by diurnal pollinators. Next, leveraging a range-wide multiyear dataset of pollinator visitation to these species, we identify that hawkmoth visitation is associated with increased fitness in long-tubed populations overall, and that long tubes are associated with less diverse visitor assemblages. Thus, long corollas represent an adaptation to hawkmoth pollination at the exclusion of diverse pollinators. Nonetheless, while hawkmoths were scarce in the northern range, secondary diurnal pollinators contributed to fruit set across the range, providing reproductive assurance despite possible trait mismatch. This study illustrates adaptive generalization in pollination systems and that floral divergence may proceed along a continuum of generalized and specialized pollinator interactions.
Collapse
Affiliation(s)
- Katherine E. Wenzell
- Botany DepartmentCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Johnathan Y. Zhang
- Interdisciplinary Programs BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - Krissa A. Skogen
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Jeremie B. Fant
- Program in Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
| |
Collapse
|
4
|
Wenzell KE, Skogen KA, Fant JB. Range‐wide floral trait variation reflects shifts in pollinator assemblages, consistent with pollinator‐mediated divergence despite generalized visitation. OIKOS 2023. [DOI: 10.1111/oik.09708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Katherine E. Wenzell
- John Innes Centre Colney Lane Norwich UK
- Northwestern Univ., Program in Plant Biology and Conservation Evanston IL USA
- Negaunee Inst. for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe IL USA
| | - Krissa A. Skogen
- Northwestern Univ., Program in Plant Biology and Conservation Evanston IL USA
- Negaunee Inst. for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe IL USA
- Clemson Univ., Dept of Biological Sciences Clemson SC USA
| | - Jeremie B. Fant
- Northwestern Univ., Program in Plant Biology and Conservation Evanston IL USA
- Negaunee Inst. for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe IL USA
| |
Collapse
|
5
|
Le HTT, Nguyen LN, Pham HLB, Le HTM, Luong TD, Huynh HTT, Nguyen VT, Nong HV, Teixidor-Toneu I, De Boer HJ, Manzanilla V. Target Capture Reveals the Complex Origin of Vietnamese Ginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:814178. [PMID: 35909770 PMCID: PMC9326450 DOI: 10.3389/fpls.2022.814178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 05/30/2023]
Abstract
The global market of the medicinal plant ginseng is worth billions of dollars. Many ginseng species are threatened in the wild and effective sustainable development initiatives are necessary to preserve biodiversity at species and genetic level whilst meeting the demand for medicinal produce. This is also the case of Panax vietnamensis Ha & Grushv., an endemic and threatened ginseng species in Vietnam that is locally cultivated at different scales and has been the object of national breeding programs. To investigate the genetic diversity within cultivated and wild populations of P. vietnamensis we captured 353 nuclear markers using the Angiosperm-353 probe set. Genetic diversity and population structure were evaluated for 319 individuals of Vietnamese ginseng across its area of distribution and from wild and a varying range of cultivated areas. In total, 319 individuals were sampled. After filtering, 1,181 SNPs were recovered. From the population statistics, we observe high genetic diversity and high genetic flow between populations. This is also supported by the STRUCTURE analysis. The intense gene flow between populations and very low genetic differentiation is observed regardless of the populations' wild or cultivated status. High levels of admixture from two ancestral populations exist in both wild and cultivated samples. The high gene flow between populations can be attributed to ancient and on-going practices of cultivation, which exist in a continuum from understorey, untended breeding to irrigated farm cultivation and to trade and exchange activities. These results highlight the importance of partnering with indigenous peoples and local communities and taking their knowledge into account for biodiversity conservation and sustainable development of plants of high cultural value.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy Science and Technology, Hanoi, Vietnam
| | - Linh Nhat Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hang Le Bich Pham
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hao Thi My Le
- Soils and Fertilizers Research Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Toan Duc Luong
- Soils and Fertilizers Research Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Hue Thi Thu Huynh
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy Science and Technology, Hanoi, Vietnam
| | - Van Tuong Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hai Van Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy Science and Technology, Hanoi, Vietnam
| | | | | | | |
Collapse
|
6
|
Yu XQ, Jiang YZ, Folk RA, Zhao JL, Fu CN, Fang L, Peng H, Yang JB, Yang SX. Species discrimination in Schima (Theaceae): Next-generation super-barcodes meet evolutionary complexity. Mol Ecol Resour 2022; 22:3161-3175. [PMID: 35789203 DOI: 10.1111/1755-0998.13683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Plastid genome and nrDNA arrays, proposed recently as "super barcodes", might provide additional discriminatory power and overcome the limitations of traditional barcoding loci, yet super barcodes need to be tested for their effectiveness in more plant groups. Morphological homoplasy among Schima species makes the genus a model for testing the efficacy of super barcodes. In this study, we generated multiple datasets comprising standard DNA barcodes (matK, rbcL, trnH-psbA, nrITS) and super-barcodes (plastid genome, nrDNA arrays) across 58 individuals from 12 out of 13 species of Schima from China. No samples were correctly assigned to species using standard DNA barcodes and nrDNA arrays, while only 27.27% of species with multiple accessions were distinguished using the plastid genome and its partitioned datasets-the lowest estimated rate of super barcode success in the literature so far. For Schima and other taxa with similarly recently divergence and low levels of genetic variation, incomplete lineage sorting, hybridization, or taxonomic oversplitting are all possible causes of the failure. Taken together, our study suggests that by no means are super barcodes immune to the challenges imposed by evolutionary complexity. We therefore call for developing multi-locus nuclear markers for species discrimination in plant groups.
Collapse
Affiliation(s)
- Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Yin-Zi Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, 39762, MS, United States
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China, China
| | - Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Liang Fang
- College of Life Sciences, Jiujiang University, 332000, Jiujiang, Jiangxi, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| |
Collapse
|
7
|
Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, McDonnell A, Pokorny L, Tate JA, Wicke S, Wickett NJ. Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. AMERICAN JOURNAL OF BOTANY 2021; 108:1059-1065. [PMID: 34293179 DOI: 10.1002/ajb2.1703] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, University Square, Luton, LU1 3JU, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Angela McDonnell
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Jennifer A Tate
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Susann Wicke
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norman J Wickett
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| |
Collapse
|
8
|
McDonnell AJ, Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, Pokorny L, Tate J, Wicke S, Wickett NJ. Exploring Angiosperms353: Developing and applying a universal toolkit for flowering plant phylogenomics. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311443. [PMID: 34336400 PMCID: PMC8312743 DOI: 10.1002/aps3.11443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 05/30/2023]
Affiliation(s)
- Angela J. McDonnell
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60022USA
| | | | - Steven Dodsworth
- School of Life SciencesUniversity of BedfordshireUniversity SquareLutonLU1 3JUUnited Kingdom
| | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Sean W. Graham
- Department of BotanyUniversity of British Columbia6270 University BoulevardVancouverBritish ColumbiaV6T 1Z4Canada
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409USA
| | - Lisa Pokorny
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP) UPM‐INIA‐CSIC28223Pozuelo de Alarcón (Madrid)Spain
| | - Jennifer Tate
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Susann Wicke
- Plant Evolutionary BiologyInstitute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
- Plant Systematics and BiodiversityInstitute for BiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Norman J. Wickett
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden1000 Lake Cook RoadGlencoeIllinois60022USA
| |
Collapse
|