1
|
Chaudhary S, Chaudhary P, Ahmad F, Arora N. Acute Myeloid Leukemia and Next-Generation Sequencing Panels for Diagnosis: A Comprehensive Review. J Pediatr Hematol Oncol 2024; 46:125-137. [PMID: 38447075 PMCID: PMC10956683 DOI: 10.1097/mph.0000000000002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of acquired somatic genetic alterations in hematopoietic progenitor cells, which alter the normal mechanisms of self-renewal, proliferation, and differentiation. Due to significant technological advancements in sequencing technologies in the last 2 decades, classification and prognostic scoring of AML has been refined, and multiple guidelines are now available for the same. The authors have tried to summarize, latest guidelines for AML diagnosis, important markers associated, epigenetics markers, various AML fusions and their importance, etc. Review of literature suggests lack of study or comprehensive information about current NGS panels for AML diagnosis, genes and fusions covered, their technical know-how, etc. To solve this issue, the authors have tried to present detailed review about currently in use next-generation sequencing myeloid panels and their offerings.
Collapse
|
2
|
Lai X, Xiao J, Wang T, Hou C, Chen J, Wu D, Xu Y. Prognostic significance of persisting DNMT3A, ASXL1, and TET2 mutation burden in acute myeloid leukemia patients with allogeneic hematopoietic stem cell transplantation during complete remission. Leuk Lymphoma 2024; 65:363-371. [PMID: 37990829 DOI: 10.1080/10428194.2023.2284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
We retrospectively analyzed 155 AML patients with DAT mutations at diagnosis who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) at complete remission. Of the 155 AML patients with DAT mutations at diagnosis, 59 (38.1%) patients had persisting DAT mutations pretransplantation. Compared to patients with pretransplant DAT transitions, patients with persisting DAT mutation burden were shown to be older (p = 0.004), and fewer patients had TET2 mutations at diagnosis (p = 0.033). Patients with persistent DAT mutation burden had shorter overall survival (OS) (3-year OS: 59.3% vs. 83.0%, p < 0.001) and disease-free survival (DFS) (3-year DFS: 56.1% vs. 83.0%, p < 0.001) with a higher cumulative incidence of relapse (CIR) (24.6% vs. 17.4%, p = 0.002) than those with DAT transitions. Additionally, multivariate analysis confirmed that persisting DAT mutations were an independent adverse factor for relapse, OS, and DFS. Collectively, persisting DAT mutations prior to allo-HSCT at complete remission for AML correlated with negative outcomes.
Collapse
Affiliation(s)
- Xiaoxuan Lai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jinyan Xiao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Hou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Yuan XL, Lai XY, Wu YB, Yang LX, Shi JM, Liu LZ, Yu J, Zhao YM, Zheng WY, He JS, Sun J, Wu WJ, Zhao Y, Ye YS, Cai Z, Huang H, Luo Y. A novel risk model for predicting early relapse in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem-cell transplantation. Bone Marrow Transplant 2023; 58:801-810. [PMID: 37072477 DOI: 10.1038/s41409-023-01979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
Relapse remains the leading cause of death in acute myeloid leukemia (AML) patients following allogeneic hematopoietic stem-cell transplantation (allo-HSCT), limiting the efficacy of allo-HSCT. Thus, the ability to identify high-risk patients in a manner that permits early intervention has the potential to improve survival outcomes. We retrospectively enrolled 414 younger patients (aged 14-60 years) with AML who received allo-HSCT between January 2014 and May 2020. From June 2020 to June 2021, 110 consecutive patients were included prospectively in the validation cohort. The primary outcome was early relapse (relapse within 1 year). The cumulative incidence of early relapse after allo-HSCT was 11.8%. The overall survival rate for patients who relapsed within 1-year was 4.1% at 3 years after relapse. After multivariable adjustment, statistically significant associations between primary resistance, pre-transplantation measurable residual disease, DNMT3A mutation, or white blood cell count at diagnosis and early relapse were observed. An early relapse prediction model was developed based on these factors and the model performed well. Patients deemed to have a high risk or a low risk of early relapse had early relapse rates of 26.2% and 6.8%, respectively (P < 0.001). The prediction model could be used to help identify patients at risk for early relapse and to guide personalized relapse prevention.
Collapse
Affiliation(s)
- Xiao-Lin Yuan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiao-Yu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi-Bo Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lu-Xin Yang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ji-Min Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Li-Zhen Liu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yan-Min Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wei-Yan Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jing-Song He
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jie Sun
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wen-Jun Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi-Shan Ye
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
4
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Chu X, Zhong L, Dan W, Wang X, Zhang Z, Liu Z, Lu Y, Shao X, Zhou Z, Chen S, Liu B. DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/NQO1 pathway. Cell Commun Signal 2022; 20:168. [PMID: 36303144 PMCID: PMC9615155 DOI: 10.1186/s12964-022-00978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methyltransferase 3A (DNMT3A) often mutate on arginine 882 (DNMT3AR882) in acute myeloid leukemia (AML). AML patients with DNMT3A R882 mutation are usually resistant to daunorubicin treatment; however, the associated mechanism is still unclear. Therefore, it is urgent to investigate daunorubicin resistance in AML patients with DNMT3A R882 mutant. METHOD AML cell lines with DNMT3A-wild type (DNMT3A-WT), and DNMT3A-Arg882His (DNMT3A-R882H) mutation were constructed to investigate the role of DNMT3A R882H mutation on cell proliferation, apoptosis and cells' sensitivity to Danunorubin. Bioinformatics was used to analyze the role of nuclear factor-E2-related factor (NRF2) in AML patients with DNMT3A R882 mutation. The regulatory mechanism of DNMT3A R882H mutation on NRF2 was studied by Bisulfite Sequencing and CO-IP. NRF2 inhibitor Brusatol (Bru) was used to explore the role of NRF2 in AML cells carried DNMT3A R882H mutation. RESULTS AML cells with a DNMT3A R882H mutation showed high proliferative and anti-apoptotic activities. In addition, mutant cells were less sensitive to daunorubicin and had a higher NRF2 expression compared with those in WT cells. Furthermore, the NRF2/NQO1 pathway was activated in mutant cells in response to daunorubicin treatment. DNMT3A R882H mutation regulated the expression of NRF2 via influencing protein stability rather than decreasing methylation of NRF2 promoter. Also, NRF2/NQO1 pathway inhibition improved mutant cells' sensitivity to daunorubicin significantly. CONCLUSION Our findings identified NRF2 as an important player in the regulation of cell apoptosis through which helps mediate chemoresistance to daunorubicin in AML cells with DNMT3A R882H mutation. Targeting NRF2 might be a novel therapeutic approach to treat AML patients with a DNMT3A R882H mutation. Video abstract.
Collapse
Affiliation(s)
- Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xiao Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhonghui Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Yang Lu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ziwei Zhou
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China. .,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Zhang T, Bao X, Qiu H, Tang X, Han Y, Fu C, Sun A, Ruan C, Wu D, Chen S, Xu Y. Development of a Nomogram for Predicting the Cumulative Incidence of Disease Recurrence of AML After Allo-HSCT. Front Oncol 2021; 11:732088. [PMID: 34646774 PMCID: PMC8503644 DOI: 10.3389/fonc.2021.732088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Using targeted exome sequencing, we studied correlations between mutations at diagnosis and transplant outcomes in 332 subjects with acute myeloid leukemia (AML) receiving allotransplantation. A total of 299 patients (299/332, 90.1%) had at least one oncogenic point mutation. In multivariable analyses, pretransplant disease status, minimal residual disease (MRD) before transplantation (pre-MRD), cytogenetic risk classification, and TP53 and FLT3-ITDhigh ratio mutations were independent risk factors for AML recurrence after allotransplantation (p < 0.05). A nomogram for the cumulative incidence of relapse (CIR) that integrated all the predictors in the multivariable model was then constructed, and the concordance index (C-index) values at 6, 12, 18, and 24 months for CIR prediction were 0.754, 0.730, 0.715, and 0.690, respectively. Moreover, calibration plots showed good agreements between the actual observation and the nomogram prediction for the 6, 12, 18, and 24 months posttransplantation CIR in the internal validation. The integrated calibration index (ICI) values were 0.008, 0.055, 0.094, and 0.136 at 6, 12, 18, and 24 months posttransplantation, respectively. With a median cutoff score of 9.73 from the nomogram, all patients could be divided into two groups, and the differences in 2-year CIR, disease-free survival (DFS), and overall survival (OS) between these two groups were significant (p < 0.05). Taken together, the results of our study indicate that gene mutations could help to predict the outcomes of patients with AML receiving allotransplantation.
Collapse
Affiliation(s)
- Tongtong Zhang
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huiying Qiu
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China
| | - Xiaowen Tang
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China
| | - Yue Han
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China
| | - Chengcheng Fu
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China
| | - Aining Sun
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Haematology, Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,National Clinical Research Centre for Haematological Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Centre of Haematology, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Huang AJ, Gao L, Ni X, Hu XX, Tang GS, Cheng H, Chen J, Chen L, Liu LX, Wang CC, Zhang WP, Yang JM, Wang JM. [Spectrum of gene mutations and clinical features in adult acute myeloid leukemia with normal karyotype]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:420-424. [PMID: 35790467 PMCID: PMC8293012 DOI: 10.3760/cma.j.issn.0253-2727.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/24/2022]
Affiliation(s)
- A J Huang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - L Gao
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - X Ni
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - X X Hu
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - G S Tang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - H Cheng
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - J Chen
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - L Chen
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - L X Liu
- Acornmed Biotechnology Co., Ltd. Beijing, 100176
| | - C C Wang
- Acornmed Biotechnology Co., Ltd. Beijing, 100176
| | - W P Zhang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - J M Yang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| | - J M Wang
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital of Navy Military Medical University (Changhai Hospital), Shanghai 200433
| |
Collapse
|
8
|
Cheng Z, Dai Y, Huang W, Zhong Q, Zhu P, Zhang W, Wu Z, Lin Q, Zhu H, Cui L, Qian T, Deng C, Fu L, Liu Y, Zeng T. Prognostic Value of MicroRNA-20b in Acute Myeloid Leukemia. Front Oncol 2021; 10:553344. [PMID: 33680910 PMCID: PMC7930740 DOI: 10.3389/fonc.2020.553344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease that requires fine-grained risk stratification for the best prognosis of patients. As a class of small non-coding RNAs with important biological functions, microRNAs play a crucial role in the pathogenesis of AML. To assess the prognostic impact of miR-20b on AML in the presence of other clinical and molecular factors, we screened 90 AML patients receiving chemotherapy only and 74 also undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. In the chemotherapy-only group, high miR-20b expression subgroup had shorter event-free survival (EFS) and overall survival (OS, both P < 0.001); whereas, there were no significant differences in EFS and OS between high and low expression subgroups in the allo-HSCT group. Then we divided all patients into high and low expression groups based on median miR-20b expression level. In the high expression group, patients treated with allo-HSCT had longer EFS and OS than those with chemotherapy alone (both P < 0.01); however, there were no significant differences in EFS and OS between different treatment subgroups in the low expression group. Further analysis showed that miR-20b was negatively correlated with genes in “ribosome,” “myeloid leukocyte mediated immunity,” and “DNA replication” signaling pathways. ORAI2, the gene with the strongest correlation with miR-20b, also had significant prognostic value in patients undergoing chemotherapy but not in the allo-HSCT group. In conclusion, our findings suggest that high miR-20b expression is a poor prognostic indicator for AML, but allo-HSCT may override its prognostic impact.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Dai
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingfu Zhong
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Wu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Lin
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huoyan Zhu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci 2020; 27:81. [PMID: 32690020 PMCID: PMC7372828 DOI: 10.1186/s12929-020-00674-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017 there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past 3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant. In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the therapeutic implications of these aberrations.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Shi X, Li J, Ma L, Wen L, Wang Q, Yao H, Ruan C, Wu D, Zhang X, Chen S. Overexpression of ZEB2-AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia. Oncol Lett 2019; 17:4935-4947. [PMID: 31186703 PMCID: PMC6507462 DOI: 10.3892/ol.2019.10149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy with poor clinical outcomes. To determine whether the expression of the long non-coding (lnc)RNA zinc finger E-box binding homeobox 2 (ZEB2) antisense RNA 1 (ZEB2-AS1) is associated with clinical outcomes, its expression was analyzed in a retrospective cohort of 62 AML and 10 non-malignant cases. The results revealed that the expression of ZEB2-AS1 lncRNA was notably high and closely associated with adverse clinical outcomes in AML cases compared with the non-malignant cases, based on either modified Medical Research Council or European Leukemia Net risk stratification systems. Univariate analyses indicated that patients with a higher expression of ZEB2-AS1 lncRNA had significantly shorter overall survival (OS) (P=0.036) and disease-free survival (DFS) rates (P=0.039) compared with patients with a lower expression of ZEB2-AS1 lncRNA. In addition, patients with a higher expression of ZEB2-AS1 lncRNA had a significant lower complete remission rate in response to induction by chemotherapy compared with patients with a lower expression of ZEB2-AS1 lncRNA (P=0.031). In cases with low levels of ZEB2-AS1 lncRNA, patients treated with allogenic hematopoietic stem cell transplantation had significantly longer OS and DFS rates compared with that of chemotherapy-treated patients (P=0.037 and P=0.049 respectively). Furthermore, the knockdown of ZEB2-AS1 lncRNA effectively inhibited AML cell invasion and migration, which was closely associated with the downregulation of ZEB2 and upregulation of E-cadherin expression. Collectively, although its independent prognostic value for survival was not rigorously determined, ZEB2-AS1 lncRNA may function as a candidate marker to improve conventional risk stratification systems and the evaluation of therapeutic responses for AML.
Collapse
Affiliation(s)
- Xiaolan Shi
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiao Li
- Department of Hematology, Yixing People's Hospital of Jiangsu Province, Yixing, Jiangsu 214200, P.R. China
| | - Liang Ma
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lijun Wen
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinrong Wang
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hong Yao
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Changgeng Ruan
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Depei Wu
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinyou Zhang
- Department of Hematology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Suning Chen
- Department of Hematology, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
11
|
Zhang G, Zhang J, Yang X, Zhang X, Yang S, Wang J, Hu K, Shi J, Ke X, Fu L. High expression of dedicator of cytokinesis 1 adversely influences the prognosis of acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Cancer Manag Res 2019; 11:3053-3060. [PMID: 31114350 PMCID: PMC6489661 DOI: 10.2147/cmar.s192845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Overexpression of dedicator of cytokinesis 1 (DOCK1) has been confirmed as an unfavorable prognostic marker in acute myeloid leukemia (AML). Purpose: This study is to explore the clinical implications of DOCK1 on AML patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients and methods: We analyzed 71 de novo AML patients treated with allo-HSCT and divided them into two groups (DOCK1 high vs DOCK1 low) by the median expression level of DOCK1. Results: High DOCK1 expression was associated with older age (P=0.019), wild-type CEBPA (P=0.002), IDH1/2 mutations (P=0.010) and RUNX1 mutation (P=0.005). Univariate analyses showed that DOCK1 high and RUNX1 mutation were associated with shorter OS (P<0.001, P=0.024). Multivariate analysis confirmed the negative effect of high DOCK1 level on overall survival (P=0.010). Conclusion: Our results demonstrate that in AML patients who received allo-HSCT, high DOCK1 expression might have a persistent negative prognostic impact post-transplant.
Collapse
Affiliation(s)
- Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Jilei Zhang
- Department of Otolaryngology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, People's Republic of China.,Department of Medical Big Data, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
12
|
Qi Y, Gao SJ, Lin H, Tan YH, Liu QJ, Sun JN, Liang XY, Su L, Hu RP, Li W. [The clinical characteristics and prognoses of de novo acute myeloid leukemia patients with DNA methyltransferase 3A gene mutations]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:227-231. [PMID: 30929391 PMCID: PMC7342527 DOI: 10.3760/cma.j.issn.0253-2727.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 11/23/2022]
Affiliation(s)
- Y Qi
- Department of Hematology, the First Hospital of Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tang SH, Lu Y, Zhang PS, Liu XH, Du XH, Chen D, Sha KY, Li SY, Cao JJ, Chen LG, Zhuang XX, Pei RZ, Tang XW. [Effect of FLT3-ITD with DNMT3A R882 double-mutation on the prognosis of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:552-557. [PMID: 30122013 PMCID: PMC7342207 DOI: 10.3760/cma.j.issn.0253-2727.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
目的 探讨FLT3-ITD和DNMT3A R882双突变对急性髓系白血病(AML)患者allo-HSCT预后的影响。 方法 使用直接测序法检测206例接受allo-HSCT的AML患者(M3和使用分子靶向药物索拉菲尼的病例除外)初诊时骨髓中常见的基因突变组套(包括FLT3-ITD、DNMT3A、c-kit、CEBPA、FLT3-TKD、NPM1),回顾性分析患者的临床资料,比较各基因突变组的移植预后。 结果 ①206例AML患者中男104例,女102例,中位年龄38(3~63)岁。FAB分型:M0 6例,M1 24例,M2 56例,M4 39例,M5 63例,M6 6例,不能分类12例。②全部206例患者根据初诊时的突变基因情况分为4组:FLT3-ITD+ DNMT3A R882+组(A组)19例,FLT3-ITD+ DNMT3A R882−组(B组)38例,FLT3-ITD−DNMT3A R882+组(C组)21例,FLT3-ITD−DNMT3A R882−组(D组)128例。四组间性别、年龄、初诊时白细胞计数、FAB分型、移植前疾病状态、染色体核型、供者类型、预处理方案及GVHD发生率比较,差异无统计学意义(P>0.05)。③A组和B、C、D组比较,2年累积复发率较高[分别为(72.2±2.6)%、(38.6±0.6)%、(36.8±1.6)%、(27.8±0.1)%,P值均<0.05],总生存率较低[分别为(30.9±13.3)%、(67.5±7.8)%、(61.4±12.4)%、(80.1±3.7)%,P值均<0.05],无白血病生存率较低[分别为(11.3±10.2)%、(47.9±8.4)%、(56.8±12.5)%、(79.7±3.6)%,P值均<0.05]。 结论 伴有FLT3-ITD与DNMT3A R882双突变的AML患者移植后累积复发率较高,总生存率和无白血病生存率较差。
Collapse
Affiliation(s)
- S H Tang
- Department of Hematology, Yinzhou People Hospital, Ningbo 315040, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Apidi E, Wan Taib WR, Hassan R, Ab Mutalib NS, Ismail I. A review on effect of genetic features on treatment responses in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Yang X, Shi J, Zhang X, Zhang G, Zhang J, Yang S, Wang J, Ke X, Fu L. Biological and clinical influences of NPM1 in acute myeloid leukemia patients with DNMT3A mutations. Cancer Manag Res 2018; 10:2489-2497. [PMID: 30122998 PMCID: PMC6086113 DOI: 10.2147/cmar.s166714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose DNMT3A and NPM1 mutations are known to impact the prognosis of acute myeloid leukemia (AML). DNMT3A mutations are negative prognostic factors, while NPM1 mutations are low-risk factors and inclined to concurrently appear with DNMT3A mutations. In this study, we aimed to find out how NPM1 mutations affect patients’ outcomes in the background of DNMT3A mutations. Patients and methods We screened The Cancer Genome Atlas (TCGA) database and found 51 AML patients with DNMT3A mutations. Of them, 28 patients had a combination of NPM1 mutations. Results In all, NPM1 had the highest mutation frequency (n=28, 54.9%). DNMT3Amut/NPM1mut patients had higher bone marrow (BM) blasts (P=0.015), higher FLT3-ITD/TKD rate (P=0.004), and lower IDH2 mutation rate (P=0.014) than the DNMT3Amut/NPM1wild patients, while their prognoses were the same as the DNMT3Amut/NPM1wild patients (P>0.1). All 51 patients benefited from hematopoietic stem cell transplantation (HSCT) treatment (P=0.005 and 0.001 for event-free survival [EFS] and overall survival [OS], respectively). In the 23 patients with DNMT3Amut/NPM1wild, those who received HSCT had prolonged EFS and OS (P=0.043 and 0.008, respectively), while HSCT treatment did not produce a positive impact on EFS and OS in the remaining 28 patients with DNMT3Amut/NPM1mut (P=0.056 and 0.053, respectively). Conclusion Our study found that NPM1 mutations influenced BM blasts’ percentage, FLT3-ITD/TKD rate, and IDH2 mutation rate in AML patients with DNMT3A mutations but made little difference to the overall prognosis. While HSCT treatments benefited all DNMT3Amut patients, it was better for DNMT3Amut/NPM1wild patients to extend their EFS and OS.
Collapse
Affiliation(s)
- Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Jilei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| |
Collapse
|
16
|
Zhang X, Shi J, Zhang J, Yang X, Zhang G, Yang S, Wang J, Ke X, Fu L. Clinical and biological implications of IDH1/2 in acute myeloid leukemia with DNMT3Amut. Cancer Manag Res 2018; 10:2457-2466. [PMID: 30122995 PMCID: PMC6084071 DOI: 10.2147/cmar.s157632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose The incidence of DNMT3A mutations in acute myeloid leukemia (AML) is quite high and often confers a poorer prognosis. Another common gene involved in AML is IDH1/2. However, the influence of IDH1/2 mutations on outcomes in DNMT3A-mutated patients remains unknown. This study aims to determine the effect of IDH1/2mut on the prognosis in patients with DNMT3A-mutated AML. Patients and methods We screened patients from The Cancer Genome Atlas database and selected 51 patients with AML and the DNMT3A mutation, among which 16 patients (31.4%) had both DNMT3A and IDH1/2mut. Results Among our sample, 11 cases had the IDH1 mutation (21.7%), and 5 cases had the IDH2 mutation (9.8%). Patients in the DNMT3AmutIDH1/2wild group showed a greater number of NPM1 mutation (P=0.022), and higher event-free survival (EFS) and overall survival (OS) after hematopoietic stem cell transplantation (HSCT) (P=0.010 and P=0.007, respectively). Patients in the DNMT3AmutIDH1/2mut group showed no increase in EFS or OS after HSCT or chemotherapy. Other factors, like white blood cells, bone marrow blasts, peripheral blood blasts, and mutated recurrent gene numbers had no significant influence on EFS and OS. Conclusion The IDH1/2 gene had little influence on the prognosis of patients with the DNMT3A mutation. For patients in the DNMT3AmutIDH1/2wild group, HSCT had a more favorable therapeutic effect. For patients with DNMT3A and IDH1/2mut, chemotherapy and HSCT appeared to have similar efficacy.
Collapse
Affiliation(s)
- Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, China
| | - Jilei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, China,
| |
Collapse
|
17
|
Ardestani MT, Kazemi A, Chahardouli B, Mohammadi S, Nikbakht M, Rostami S, Jalili M, Vaezi M, Alimoghaddam K, Ghavamzadeh A. FLT3-ITD Compared with DNMT3A R882 Mutation Is a More Powerful Independent Inferior Prognostic Factor in Adult Acute Myeloid Leukemia Patients After Allogeneic Hematopoietic Stem Cell Transplantation: A Retrospective Cohort Study. Turk J Haematol 2018; 35:158-167. [PMID: 29786546 PMCID: PMC6110452 DOI: 10.4274/tjh.2018.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective This study aimed to evaluate DNMT3A exon 23 mutations and their prognostic impacts in the presence of NPM1 and FLT3 mutations in acute myeloid leukemia (AML) patients who underwent allogeneic hematopoietic stem cell transplantation (HSCT). Materials and Methods This study comprised 128 adult AML patients referred to the Hematology-Oncology and Stem Cell Research Center of Shariati Hospital. NPM1 and FLT3-ITD mutations were detected by fragment analysis. For DNMT3A exon 23 mutation analysis, we used Sanger sequencing. Overall survival (OS) and relapse-free survival (RFS) curves were estimated by the Kaplan-Meier method and the log-rank test was used to calculate differences between groups. Results The prevalence of DNMT3A exon 23 mutations was 15.6% and hotspot region R882 mutations were prominent. RFS and OS were compared in patients with and without DNMT3A exon 23 mutations using univariate analysis and there was no significant difference between these groups of patients. On the contrary, the FLT3-ITD mutation significantly reduced the OS (p=0.009) and RFS (p=0.006) in AML patients after allogeneic HSCT. In the next step, patients with AML were divided into four groups regarding FLT3-ITD and DNMT3A mutations. Patients with DNMT3A R882mut/FLT3-ITDpos had the worst OS and RFS. These results indicate that DNMT3A mutations alone do not affect the clinical outcomes of AML patients undergoing allogeneic HSCT, but when accompanied by FLT3-ITD mutations, the OS was significantly reduced (5-year OS 0% for DNMT3A R882mut/FLT3-ITDpos patients vs. 62% DNMT3A R882wt/FLT3-ITDneg, p=0.025) and the relapse rate increased. Conclusion It can be deduced that DNMT3A R882mut/FLT3-ITDpos is an unfavorable prognostic factor in AML patients even after allogeneic HSCT.
Collapse
Affiliation(s)
- Majid Teremmahi Ardestani
- Iran University of Medical Sciences, School of Allied Medical Sciences, Department of Hematology, Tehran, Iran
| | - Ahmad Kazemi
- Iran University of Medical Sciences, School of Allied Medical Sciences, Department of Hematology, Tehran, Iran
| | - Bahram Chahardouli
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Saeed Mohammadi
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Mohsen Nikbakht
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Shahrbano Rostami
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Mahdi Jalili
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Mohammad Vaezi
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Kamran Alimoghaddam
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Tehran University of Medical Sciences, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center; Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Isocitrate dehydrogenases (IDHs) are enzymes involved in multiple metabolic and epigenetic cellular processes. Mutations in IDH1 or IDH2 are detected in approximately 20% of patients with acute myeloid leukemia (AML) and induce amino acid changes in conserved residues resulting in neomorphic enzymatic function and production of an oncometabolite, 2-hydroxyglutarate (R-2-HG). This leads to DNA hypermethylation, aberrant gene expression, cell proliferation and abnormal differentiation. IDH mutations diversely affect prognosis of patients with AML based on the location of the mutation and other co-occurring genomic abnormalities. Recently, novel therapies specifically targeting mutant IDH have opened new avenues of therapy for these patients. In the present review, we will provide an overview of the biological, clinical and therapeutic implications of IDH mutations in AML.
Collapse
Affiliation(s)
- Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
19
|
Schmalbrock LK, Bonifacio L, Bill M, Jentzsch M, Schubert K, Grimm J, Cross M, Lange T, Vucinic V, Pönisch W, Behre G, Franke GN, Niederwieser D, Schwind S. Prognostic relevance of DNMT3A R882 mutations in AML patients undergoing non-myeloablative conditioning hematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 53:640-643. [PMID: 29335621 DOI: 10.1038/s41409-017-0060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/15/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Laura K Schmalbrock
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Lynn Bonifacio
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Marius Bill
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Madlen Jentzsch
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Karoline Schubert
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Juliane Grimm
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Michael Cross
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Thoralf Lange
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Vladan Vucinic
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Wolfram Pönisch
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | - Gerhard Behre
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | | | | | - Sebastian Schwind
- Department of Hematology and Oncology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
McCurdy SR, Levis MJ. Emerging molecular predictive and prognostic factors in acute myeloid leukemia. Leuk Lymphoma 2017; 59:2021-2039. [DOI: 10.1080/10428194.2017.1393669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shannon R. McCurdy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Kroemeke A, Sobczyk-Kruszelnicka M, Kwissa-Gajewska Z. Everyday life following hematopoietic stem cell transplantation: decline in physical symptoms within the first month and change-related predictors. Qual Life Res 2017; 27:125-135. [PMID: 28900828 PMCID: PMC5770502 DOI: 10.1007/s11136-017-1705-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE Lower quality of life, especially in the physical domain (Physical-QOL), is common in patients after hematopoietic stem cell transplantation (HSCT). However, few studies explore changes in the Physical-QOL, i.e., physical symptoms, in everyday life of patients following HSCT. The present study addresses this gap by examining patient daily physical symptoms and their predictors in terms of demographic and clinical characteristics. METHODS Physical symptoms were reported by 188 patients (56.9% men; aged 47.6 ± 13.4 years) for 28 consecutive days after post-HSCT hospital discharge. Multilevel modeling was used to investigate fixed and random effects for physical symptom changes over time. RESULTS The results indicated that the initial level of physical symptoms (immediately after hospital discharge) systematically decreased over 28 days. Treatment toxicity (WHO scale; β = 0.09, p < .01) and baseline depressive symptoms (CES-D scale; β = 0.06, p < .01) were associated with the initial level of physical symptoms. Patients with more depressive symptoms before HSCT and with more adverse treatment effects presented with more physical symptoms immediately after hospital discharge. The type of transplant, diagnosis, and conditioning regimen differentiated the course of physical symptoms. Patients with leukemias and other myeloid neoplasms (β = 0.05, p < .01), after allogeneic HSCT (β = -0.06, p < .01), and with non-myeloablative conditioning (β = -0.09, p < .01) showed a significant lower decrease in symptoms over time. Patients with multiple myeloma presented with the most rapid improvement (β = -.03, p < .05). CONCLUSIONS The findings suggest a heterogeneous and rather positive response to HSCT. Treatment-related conditions occurred to be a significant predictor of the intensity of change in physical functioning after HSCT.
Collapse
Affiliation(s)
- Aleksandra Kroemeke
- Department of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska Street 19/31, 03-815, Warsaw, Poland.
| | | | | |
Collapse
|
22
|
FLT3-ITD with DNMT3A R882 double mutation is a poor prognostic factor in Chinese patients with acute myeloid leukemia after chemotherapy or allogeneic hematopoietic stem cell transplantation. Int J Hematol 2017; 106:552-561. [DOI: 10.1007/s12185-017-2256-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
23
|
Major molecular response prior to allogeneic hematopoietic stem cell transplantation predicts better outcome in adult Philadelphia-positive acute lymphoblastic leukemia in first remission. Bone Marrow Transplant 2017; 52:470-472. [DOI: 10.1038/bmt.2016.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Persistent DNMT3A mutation burden in DNMT3A mutated adult cytogenetically normal acute myeloid leukemia patients in long-term remission. Leuk Res 2016; 49:102-7. [DOI: 10.1016/j.leukres.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
|
25
|
Hou HA, Tien HF. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Expert Rev Hematol 2016; 9:447-69. [DOI: 10.1586/17474086.2016.1144469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|