1
|
Girelli D, Marchi G, Busti F. Diagnosis and management of hereditary hemochromatosis: lifestyle modification, phlebotomy, and blood donation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:434-442. [PMID: 39644049 DOI: 10.1182/hematology.2024000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The term hemochromatosis refers to a group of genetic disorders characterized by hepcidin insufficiency in the context of normal erythropoiesis, iron hyperabsorption, and expansion of the plasma iron pool with increased transferrin saturation, the diagnostic hallmark of the disease. This results in the formation of toxic non-transferrin-bound iron, which ultimately accumulates in multiple organs, including the liver, heart, endocrine glands, and joints. The most common form is HFE-hemochromatosis (HFE-H) due to p.Cys282Tyr (C282Y) homozygosity, present in nearly 1 in 200 people of Northern European descent but characterized by low penetrance, particularly in females. Genetic and lifestyle cofactors (especially alcohol and dysmetabolic features) significantly modulate clinical expression so that HFE-H can be considered a multifactorial disease. Nowadays, HFE-H is mostly diagnosed before organ damage and is easily treated by phlebotomy, with an excellent prognosis. After iron depletion, maintenance phlebotomy can be usefully transformed into a blood donation program. Lifestyle changes are important for management. Non-HFE-H, much rarer but highly penetrant, may lead to early and severe heart, liver, and endocrine complications. Managing severe hemochromatosis requires a comprehensive approach optimally provided by consultation with specialized centers. In clinical practice, a proper diagnostic approach is paramount for patients referred for hyperferritinemia, a frequent finding that reflects hemochromatosis only in a minority of cases.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, University of Verona and EuroBloodNet Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giacomo Marchi
- Department of Medicine, University of Verona and EuroBloodNet Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, University of Verona and EuroBloodNet Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
2
|
Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood 2022; 139:3018-3029. [PMID: 34601591 PMCID: PMC11022970 DOI: 10.1182/blood.2021011338] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous HC classification developed by a working group of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society), including both clinicians and basic scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of a classification addressing both clinical issues and molecular complexity. Ferroportin disease (former type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of practical help whenever a detailed molecular characterization of HC is not readily available.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Pierre Brissot
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
| | - Ioav Cabantchik
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
| | - Graça Porto
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| | - on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society)
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| |
Collapse
|
3
|
Hemochromatosis redefined. Blood 2022; 139:3001-3002. [PMID: 35587868 DOI: 10.1182/blood.2021014036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
|
4
|
Bardou-Jacquet E, Hamdi-Roze H, Paisant A, Decraecker M, Bourlière M, Ganne-Carrié N, de Lédinghen V, Bureau C. Non-invasive diagnosis and follow-up of hyperferritinaemia. Clin Res Hepatol Gastroenterol 2022; 46:101762. [PMID: 34332132 DOI: 10.1016/j.clinre.2021.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 02/04/2023]
Abstract
Increased serum ferritin is a very frequent cause of referral for which thorough evaluation is required to avoid unnecessary exploration and inaccurate diagnosis. Clinicians must thus know factors and tools that are relevant in this setting. Several biochemical and radiological tools drastically improved the diagnosis work-up of increased serum ferritin. Because serum ferritin value can be altered by many cofounding factors, scrutiny in the initial clinical evaluation is crucial. Alcohol consumption, and the metabolic syndrome are the most frequent causes of secondary increased ferritin. Serum transferrin saturation level is a pivotal test, and if increased prompt testing for HFE C282Y patients in Caucasian population. In most cases further tests are require to establish whether increased ferritin is associated or not to iron overload. Magnetic resonance imaging is the reference method allowing to accurately establish liver iron content which indirectly reflect body iron load. Second line genetic testing for rare forms of iron overload or increased serum ferritin are available in reference center and should be discussed if diagnosis is equivocal or remain uncertain after careful evaluation. Definite genetic diagnosis is worthwhile as it allows family screening and refining long term management of the patient. Liver biopsy remains seldom useful to assess liver fibrosis, mostly in patients with severe iron overload.
Collapse
Affiliation(s)
- Edouard Bardou-Jacquet
- Edouard Bardou-Jacquet, Service des maladies du foie, CHU Pontchaillou, 2 rue Henri le Guilloux, 35033 Rennes Cedex 9, France.
| | - Houda Hamdi-Roze
- Laboratoire de génétique moléculaire et génomique médicale, CHU Rennes, Rennes, France
| | - Anita Paisant
- Département de radiologie, CHU Angers, Angers, France
| | - Marie Decraecker
- Service d'hépato-gastroentérologie, Hôpital Haut-Lévêque, CHU Bordeaux, Pessac, France
| | - Marc Bourlière
- Service d'hépato-gastroentérologie, Hôpital Saint Joseph, Marseille, France
| | - Nathalie Ganne-Carrié
- Service d'hépatologie, Hôpital Avicenne, CHU Paris Seine-Saint-Denis, APHP, Bobigny, France
| | | | - Christophe Bureau
- Service d'hépatologie, Hôpital Rangueil, CHU Toulouse, Toulouse, France
| |
Collapse
|
5
|
Ravasi G, Pelucchi S, Bertola F, Capelletti MM, Mariani R, Piperno A. Identification of Novel Mutations by Targeted NGS Panel in Patients with Hyperferritinemia. Genes (Basel) 2021; 12:genes12111778. [PMID: 34828384 PMCID: PMC8623017 DOI: 10.3390/genes12111778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several inherited diseases cause hyperferritinemia with or without iron overload. Differential diagnosis is complex and requires an extensive work-up. Currently, a clinical-guided approach to genetic tests is performed based on gene-by-gene sequencing. Although reasonable, this approach is expensive and time-consuming and Next Generation Sequencing (NGS) technology may provide cheaper and quicker large-scale DNA sequencing. METHODS We analysed 36 patients with non-HFE-related hyperferritinemia. Liver iron concentration was measured in 33 by magnetic resonance. A panel of 25 iron related genes was designed using SureDesign software. Custom libraries were generated and then sequenced using Ion Torrent PGM. RESULTS We identified six novel mutations in SLC40A1, three novel and one known mutation in TFR2, one known mutation and a de-novo deletion in HJV, and a novel mutation in HAMP in ten patients. In silico analyses supported the pathogenic role of the mutations. CONCLUSIONS Our results support the use of an NGS-based panel in selected patients with hyperferritinemia in a tertiary center for iron metabolism disorders. However, 26 out of 36 patients did not show genetic variants that can individually explain hyperferritinemia and/or iron overload suggesting the existence of other genetic defects or gene-gene and gene-environment interactions needing further studies.
Collapse
Affiliation(s)
- Giulia Ravasi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
| | - Francesca Bertola
- Medical Genetics, S. Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
| | - Martina Maria Capelletti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
| | - Raffaella Mariani
- Disorders of Iron Metabolism, Centre for Rare Diseases, San Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
| | - Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
- Medical Genetics, S. Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
- Disorders of Iron Metabolism, Centre for Rare Diseases, San Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
- Correspondence: ; Tel.: +39-03-9233-3461
| |
Collapse
|
6
|
Viveiros A, Schaefer B, Panzer M, Henninger B, Plaikner M, Kremser C, Franke A, Franzenburg S, Hoeppner MP, Stauder R, Janecke A, Tilg H, Zoller H. MRI-Based Iron Phenotyping and Patient Selection for Next-Generation Sequencing of Non-Homeostatic Iron Regulator Hemochromatosis Genes. Hepatology 2021; 74:2424-2435. [PMID: 34048062 PMCID: PMC8596846 DOI: 10.1002/hep.31982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS High serum ferritin is frequent among patients with chronic liver disease and commonly associated with hepatic iron overload. Genetic causes of high liver iron include homozygosity for the p.Cys282Tyr variant in homeostatic iron regulator (HFE) and rare variants in non-HFE genes. The aims of the present study were to describe the landscape and frequency of mutations in hemochromatosis genes and determine whether patient selection by noninvasive hepatic iron quantification using MRI improves the diagnostic yield of next-generation sequencing (NGS) in patients with hyperferritinemia. APPROACH AND RESULTS A cohort of 410 unselected liver clinic patients with high serum ferritin (defined as ≥200 μg/L for women and ≥300 μg/L for men) was investigated by HFE genotyping and abdominal MRI R2*. Forty-one (10%) patients were homozygous for the p.Cys282Tyr variant in HFE. Of the remaining 369 patients, 256 (69%) had high transferrin saturation (TSAT; ≥45%) and 199 (53%) had confirmed hepatic iron overload (liver R2* ≥70 s-1 ). NGS of hemochromatosis genes was carried out in 180 patients with hepatic iron overload, and likely pathogenic variants were identified in 68 of 180 (38%) patients, mainly in HFE (79%), ceruloplasmin (25%), and transferrin receptor 2 (19%). Low spleen iron (R2* <50 s-1 ), but not TSAT, was significantly associated with the presence of mutations. In 167 patients (93%), no monogenic cause of hepatic iron overload could be identified. CONCLUSIONS In patients without homozygosity for p.Cys282Tyr, coincident pathogenic variants in HFE and non-HFE genes could explain hyperferritinemia with hepatic iron overload in a subset of patients. Unlike HFE hemochromatosis, this type of polygenic hepatic iron overload presents with variable TSAT. High ferritin in blood is an indicator of the iron storage disease, hemochromatosis. A simple genetic test establishes this diagnosis in the majority of patients affected. MRI of the abdomen can guide further genetic testing.
Collapse
Affiliation(s)
- André Viveiros
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | - Benedikt Schaefer
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | - Marlene Panzer
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | | | - Michaela Plaikner
- Department of RadiologyMedical University of InnsbruckInnsbruckAustria
| | - Christian Kremser
- Department of RadiologyMedical University of InnsbruckInnsbruckAustria
| | - André Franke
- Institute of Clinical Molecular Biology (IKMB)Kiel UniversityKielGermany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology (IKMB)Kiel UniversityKielGermany
| | - Marc P. Hoeppner
- Institute of Clinical Molecular Biology (IKMB)Kiel UniversityKielGermany
| | - Reinhard Stauder
- Department of Medicine VMedical University of InnsbruckInnsbruckAustria
| | - Andreas Janecke
- Department of PediatricsMedical University of InnsbruckInnsbruckAustria
- Department of GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Herbert Tilg
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | - Heinz Zoller
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
7
|
Baas FS, Rishi G, Swinkels DW, Subramaniam VN. Genetic Diagnosis in Hereditary Hemochromatosis: Discovering and Understanding the Biological Relevance of Variants. Clin Chem 2021; 67:1324-1341. [PMID: 34402502 DOI: 10.1093/clinchem/hvab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hereditary hemochromatosis (HH) is a genetic disease, leading to iron accumulation and possible organ damage. Patients are usually homozygous for p. Cys282Tyr in the homeostatic iron regulator gene but may have mutations in other genes involved in the regulation of iron. Next-generation sequencing is increasingly being utilized for the diagnosis of patients, leading to the discovery of novel genetic variants. The clinical significance of these variants is often unknown. CONTENT Determining the pathogenicity of such variants of unknown significance is important for diagnostics and genetic counseling. Predictions can be made using in silico computational tools and population data, but additional evidence is required for a conclusive pathogenicity classification. Genetic disease models, such as in vitro models using cellular overexpression, induced pluripotent stem cells or organoids, and in vivo models using mice or zebrafish all have their own challenges and opportunities when used to model HH and other iron disorders. Recent developments in gene-editing technologies are transforming the field of genetic disease modeling. SUMMARY In summary, this review addresses methods and developments regarding the discovery and classification of genetic variants, from in silico tools to in vitro and in vivo models, and presents them in the context of HH. It also explores recent gene-editing developments and how they can be applied to the discussed models of genetic disease.
Collapse
Affiliation(s)
- Floor S Baas
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands.,Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Dorine W Swinkels
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
8
|
Kristan A, Pajič T, Maver A, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Podgornik H, Anžej Doma S, Preložnik Zupan I, Rozman D, Debeljak N. Identification of Variants Associated With Rare Hematological Disorder Erythrocytosis Using Targeted Next-Generation Sequencing Analysis. Front Genet 2021; 12:689868. [PMID: 34349782 PMCID: PMC8327209 DOI: 10.3389/fgene.2021.689868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
An erythrocytosis is present when the red blood cell mass is increased, demonstrated as elevated hemoglobin and hematocrit in the laboratory evaluation. Congenital predispositions for erythrocytosis are rare, with germline variants in several genes involved in oxygen sensing (VHL, EGLN1, and EPAS1), signaling for hematopoietic cell maturation (EPOR and EPO), and oxygen transfer (HBB, HBA1, HBA2, and BPGM) that were already associated with the eight congenital types (ECYT1–8). Screening for variants in known congenital erythrocytosis genes with classical sequencing approach gives a correct diagnosis for only up to one-third of the patients. The genetic background of erythrocytosis is more heterogeneous, and additional genes involved in erythropoiesis and iron metabolism could have a putative effect on the development of erythrocytosis. This study aimed to detect variants in patients with yet unexplained erythrocytosis using the next-generation sequencing (NGS) approach, targeting genes associated with erythrocytosis and increased iron uptake and implementing the diagnostics of congenital erythrocytosis in Slovenia. Selected 25 patients with high hemoglobin, high hematocrit, and no acquired causes were screened for variants in the 39 candidate genes. We identified one pathogenic variant in EPAS1 gene and three novel variants with yet unknown significance in genes EPAS1, JAK2, and SH2B3. Interestingly, a high proportion of patients were heterozygous carriers for two variants in HFE gene, otherwise pathogenic for the condition of iron overload. The association between the HFE variants and the development of erythrocytosis is not clearly understood. With a targeted NGS approach, we determined an actual genetic cause for the erythrocytosis in one patient and contributed to better management of the disease for the patient and his family. The effect of variants of unknown significance on the enhanced production of red blood cells needs to be further explored with functional analysis. This study is of great significance for the improvement of diagnosis of Slovenian patients with unexplained erythrocytosis and future research on the etiology of this rare hematological disorder.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajič
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Količ
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Andrej Vuga
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Martina Fink
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Žula
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Anžej Doma
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Lira Zidanes A, Marchi G, Busti F, Marchetto A, Fermo E, Giorgetti A, Vianello A, Castagna A, Olivieri O, Bianchi P, Girelli D. A Novel ALAS2 Missense Mutation in Two Brothers With Iron Overload and Associated Alterations in Serum Hepcidin/Erythroferrone Levels. Front Physiol 2020; 11:581386. [PMID: 33281618 PMCID: PMC7689258 DOI: 10.3389/fphys.2020.581386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023] Open
Abstract
Iron loading anemias are characterized by ineffective erythropoiesis and iron overload. The prototype is non-transfusion dependent ß-thalassemia (NTDT), with other entities including congenital sideroblastic anemias, congenital dyserythropoietic anemias, some hemolytic anemias, and myelodysplastic syndromes. Differential diagnosis of iron loading anemias may be challenging due to heterogeneous genotype and phenotype. Notwithstanding the recent advances in linking ineffective erythropoiesis to iron overload, many pathophysiologic aspects are still unclear. Moreover, measurement of hepcidin and erythroferrone (ERFE), two key molecules in iron homeostasis and erythropoiesis, is scarcely used in clinical practice and of uncertain utility. Here, we describe a comprehensive diagnostic approach, including next-generation sequencing (NGS), in silico modeling, and measurement of hepcidin and erythroferrone (ERFE), in two brothers eventually diagnosed as X-linked sideroblastic anemia (XLSA). A novel pathogenic ALAS2 missense mutation (c.1382T>A, p.Leu461His) is described. Hyperferritinemia with high hepcidin-25 levels (but decreased hepcidin:ferritin ratio) and mild-to-moderate iron overload were detected in both patients. ERFE levels were markedly elevated in both patients, especially in the proband, who had a more expressed phenotype. Our study illustrates how new technologies, such as NGS, in silico modeling, and measurement of serum hepcidin-25 and ERFE, may help in diagnosing and studying iron loading anemias. Further studies on the hepcidin-25/ERFE axis in additional patients with XLSA and other iron loading anemias may help in establishing its usefulness in differential diagnosis, and it may also aid our understanding of the pathophysiology of these genetically and phenotypically heterogeneous entities.
Collapse
Affiliation(s)
- Acaynne Lira Zidanes
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Giacomo Marchi
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Fabiana Busti
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | | | - Elisa Fermo
- Hematology and Pathophysiology of Anemias Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Ca' Granda Foundation, Policlinico Milano, Milan, Italy
| | | | - Alice Vianello
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Annalisa Castagna
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Oliviero Olivieri
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| | - Paola Bianchi
- Hematology and Pathophysiology of Anemias Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Ca' Granda Foundation, Policlinico Milano, Milan, Italy
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy.,EuroBloodNet Referral Center for Rare Disorders of Iron Metabolism, University Hospital of Verona, Verona, Italy
| |
Collapse
|
10
|
Alvarenga AM, da Silva NK, Fonseca PFS, Oliveira TGM, da Silva Monteiro JB, Cançado RD, Naoum FA, Dinardo CL, Brissot P, Santos PCJL. Novel mutations in the bone morphogenetic protein 6 gene in patients with iron overload and non-homozygous genotype for the HFE p.Cys282Tyr mutation. Blood Cells Mol Dis 2020; 84:102444. [PMID: 32464486 DOI: 10.1016/j.bcmd.2020.102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Five main genes are associated with hemochromatosis; however, current studies show that, in addition to these genes, others may be associated with primary iron overload (IO). One of these is the bone morphogenetic protein 6 (BMP6), which encodes a protein that modulates hepcidin synthesis and, consequently, iron homeostasis. AIM To identify BMP6 gene pathogenic variants in patients with IO and non-homozygous genotype for the HFE p.Cys282Tyr mutation. MATERIALS AND METHODS Fifty-three patients with primary IO and non-homozygous genotype for the HFE p.Cys282Tyr were selected. Subsequent bidirectional DNA sequencing of BMP6 exons was performed. RESULTS Two novel variants were found. One at homozygous state p.Gln158Ter (c.472C>T) was pathogenic, the other one at heterozygous state p.Val394Met (c.1180G>A) was of uncertain significance (VUS); the third variant at heterozygous state p.Arg257His (c.770G>A) has already been described and associated with IO. No BMP6 pathogenic variants that would explain iron overload phenotypes were detected in 94% of the studied patients. CONCLUSION Identification of the BMP6 pathogenic variants in Brazilian patients with primary IO might contribute to the genetic understanding of this phenotype.
Collapse
Affiliation(s)
- Aline Morgan Alvarenga
- Department of Pharmacology - Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, Brazil.
| | - Nathália Kozikas da Silva
- Department of Pharmacology - Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, Brazil.
| | - Paula Fernanda Silva Fonseca
- Department of Pharmacology - Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, Brazil.
| | - Theo G M Oliveira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | | | - Carla Luana Dinardo
- Fundação Pró-Sangue, Hemocentro de São Paulo, São Paulo, SP, Brazil; Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Pierre Brissot
- Institut NuMeCan, Inserm U-1241, Univ Rennes 1, Rennes, France.
| | - Paulo Caleb Junior Lima Santos
- Department of Pharmacology - Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, Brazil.
| |
Collapse
|
11
|
Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020; 5:25. [PMID: 32258529 DOI: 10.21037/tgh.2019.11.15] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary iron overload includes several disorders characterized by iron accumulation in tissues, organs, or even single cells or subcellular compartments. They are determined by mutations in genes directly involved in hepcidin regulation, cellular iron uptake, management and export, iron transport and storage. Systemic forms are characterized by increased serum ferritin with or without high transferrin saturation, and with or without functional iron deficient anemia. Hemochromatosis includes five different genetic forms all characterized by high transferrin saturation and serum ferritin, but with different penetrance and expression. Mutations in HFE, HFE2, HAMP and TFR2 lead to inadequate or severely reduced hepcidin synthesis that, in turn, induces increased intestinal iron absorption and macrophage iron release leading to tissue iron overload. The severity of hepcidin down-regulation defines the severity of iron overload and clinical complications. Hemochromatosis type 4 is caused by dominant gain-of-function mutations of ferroportin preventing hepcidin-ferroportin binding and leading to hepcidin resistance. Ferroportin disease is due to loss-of-function mutation of SLC40A1 that impairs the iron export efficiency of ferroportin, causes iron retention in reticuloendothelial cell and hyperferritinemia with normal transferrin saturation. Aceruloplasminemia is caused by defective iron release from storage and lead to mild microcytic anemia, low serum iron, and iron retention in several organs including the brain, causing severe neurological manifestations. Atransferrinemia and DMT1 deficiency are characterized by iron deficient erythropoiesis, severe microcytic anemia with high transferrin saturation and parenchymal iron overload due to secondary hepcidin suppression. Diagnosis of the different forms of hereditary iron overload disorders involves a sequential strategy that combines clinical, imaging, biochemical, and genetic data. Management of iron overload relies on two main therapies: blood removal and iron chelators. Specific therapeutic options are indicated in patients with atransferrinemia, DMT1 deficiency and aceruloplasminemia.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
12
|
Vila Cuenca M, Marchi G, Barqué A, Esteban-Jurado C, Marchetto A, Giorgetti A, Chelban V, Houlden H, Wood NW, Piubelli C, Dorigatti Borges M, Martins de Albuquerque D, Yotsumoto Fertrin K, Jové-Buxeda E, Sanchez-Delgado J, Baena-Díez N, Burnyte B, Utkus A, Busti F, Kaubrys G, Suku E, Kowalczyk K, Karaszewski B, Porter JB, Pollard S, Eleftheriou P, Bignell P, Girelli D, Sanchez M. Genetic and Clinical Heterogeneity in Thirteen New Cases with Aceruloplasminemia. Atypical Anemia as a Clue for an Early Diagnosis. Int J Mol Sci 2020; 21:E2374. [PMID: 32235485 PMCID: PMC7178074 DOI: 10.3390/ijms21072374] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.
Collapse
Affiliation(s)
- Marc Vila Cuenca
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Giacomo Marchi
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Anna Barqué
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Clara Esteban-Jurado
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Alessandro Marchetto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Viorica Chelban
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Toma Ciorbă 1, Chisinau, MD-2052 Chisinau, Republic of Moldova
| | - Henry Houlden
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Nicholas W Wood
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Chiara Piubelli
- Centre for Tropical Diseases, Ospedale Sacro Cuore - Don Calabria, 37024 Negrar (VR), Italy;
| | - Marina Dorigatti Borges
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
| | - Dulcinéia Martins de Albuquerque
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
| | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ester Jové-Buxeda
- Internal Medicine Department, Parc Tauli Hospital Universitari, Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
| | - Jordi Sanchez-Delgado
- Hepatology Unit, Digestive Diseases Department, Parc Tauli Hospital Universitari. Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
- Centro de Investigación Biomedica y en red Enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Neus Baena-Díez
- Genetic Department, Parc Tauli Hospital Universitari, Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Fabiana Busti
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania;
| | - Eda Suku
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Kamil Kowalczyk
- Department of Adult Neurology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (B.K.)
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (B.K.)
| | - John B. Porter
- Joint Red Cell Unit, Haematology Department, University College London NHS Foundation Trust, Cancer Services, 250 Euston Road, London NW1 2PG, UK; (J.B.P.); (P.E.)
| | - Sally Pollard
- Consultant Paediatrician, Bradford Royal Infirmary, Duckworthlane, Bradford BD9 6RJ, UK;
| | - Perla Eleftheriou
- Joint Red Cell Unit, Haematology Department, University College London NHS Foundation Trust, Cancer Services, 250 Euston Road, London NW1 2PG, UK; (J.B.P.); (P.E.)
| | - Patricia Bignell
- Oxford Regional Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford OX3 7LE, UK;
| | - Domenico Girelli
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Mayka Sanchez
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC); Sant Cugat del Valles, 08017 Barcelona, Spain
- Program of Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d ‘Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, 08916 Barcelona, Spain
- BloodGenetics S.L., Esplugues de Llobregat, 08950 Barcelona, Spain
| |
Collapse
|
13
|
Rametta R, Dongiovanni P, Baselli GA, Pelusi S, Meroni M, Fracanzani AL, Busti F, Castagna A, Scarlini S, Corradini E, Pietrangelo A, Girelli D, Fargion S, Valenti L. Impact of natural neuromedin-B receptor variants on iron metabolism. Am J Hematol 2020; 95:167-177. [PMID: 31724192 DOI: 10.1002/ajh.25679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
Iron overload heritability remains partly unexplained. By performing whole exome sequencing in three patients with a clinical phenotype of hemochromatosis not accounted by known genetic risk factors, we identified in all patients rare variants predicted to alter activity of Neuromedin-B receptor (NMBR). Coding NMBR mutations were enriched in 129 patients with hereditary hemochromatosis or iron overload phenotype, as compared to ethnically matched controls, including 100 local healthy blood donors and 1000Genomes project participants (15.5% vs 5%, P = .0038 at burden test), and were associated with higher transferrin saturation in regular blood donors (P = .04). Consistently, in 191 patients with nonalcoholic fatty liver, the most common low-frequency p.L390 M variant was independently associated with higher ferritin (P = .03). In 58 individuals, who underwent oral iron challenge, carriage of the p.L390 M variant was associated with higher transferrin saturation and lower hepcidin release. Furthermore, the circulating concentration of the natural NMBR ligand, Neuromedin-B, was reduced in response to iron challenge. It was also decreased in individuals carrying the p.L390 M variant and with hemochromatosis in parallel with increased transferrin saturation. In mice, Nmbr was induced by chronic dietary iron overload in the liver, gut, pancreas, spleen, and skeletal muscle, while Nmb was downregulated in gut, pancreas and spleen. Finally, Nmb amplified holo-transferrin dependent induction of hepcidin in primary mouse hepatocytes, which was associated with Jak2 induction and abolished by the NMBR antagonist PD168368. In conclusion, NMBR natural variants were enriched in patients with iron overload, and associated with facilitated iron absorption, possibly related to a defect of iron-induced hepcidin release.
Collapse
Affiliation(s)
- Raffaela Rametta
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Guido A. Baselli
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
| | - Serena Pelusi
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Marica Meroni
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Anna L. Fracanzani
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
| | - Fabiana Busti
- Department of MedicineSection of Internal Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona Verona Italy
| | - Annalisa Castagna
- Department of MedicineSection of Internal Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona Verona Italy
| | - Stefania Scarlini
- Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver DiseasesAzienda Ospedaliera Universitaria di Modena, University of Modena and Reggio Emilia Modena Italy
| | - Elena Corradini
- Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver DiseasesAzienda Ospedaliera Universitaria di Modena, University of Modena and Reggio Emilia Modena Italy
| | - Antonello Pietrangelo
- Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver DiseasesAzienda Ospedaliera Universitaria di Modena, University of Modena and Reggio Emilia Modena Italy
| | - Domenico Girelli
- Department of MedicineSection of Internal Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona Verona Italy
| | - Silvia Fargion
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
| | - Luca Valenti
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| |
Collapse
|
14
|
Viveiros A, Schaefer B, Tilg H, Zoller H. Iron Matryoshka-Haemochromatosis nested in Ferroportin Disease? Liver Int 2019; 39:1014-1015. [PMID: 31127686 DOI: 10.1111/liv.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 02/13/2023]
Affiliation(s)
- André Viveiros
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Schaefer
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Palmer WC, Vishnu P, Sanchez W, Aqel B, Riegert-Johnson D, Seaman LAK, Bowman AW, Rivera CE. Diagnosis and Management of Genetic Iron Overload Disorders. J Gen Intern Med 2018; 33:2230-2236. [PMID: 30225768 PMCID: PMC6258594 DOI: 10.1007/s11606-018-4669-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/23/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Iron overload disorders lead to excess iron deposition in the body, which can occur as a result of genetic or secondary causes. Genetic iron overload, referred to as hereditary hemochromatosis, may present as a common autosomal recessive mutation or as one of several uncommon mutations. Secondary iron overload may result from frequent blood transfusions, exogenous iron intake, or certain hematological diseases such as dyserythropoietic syndrome or chronic hemolytic anemia. Iron overload may be asymptomatic, or may present with significant diseases of the liver, heart, endocrine glands, joints, or other organs. If treated appropriately prior to end-organ damage, life expectancy has been shown to be similar compared to matched populations. Alongside clinical assessment, diagnostic studies involve blood tests, imaging, and in some cases liver biopsy. The mainstay of therapy is periodic phlebotomy, although oral chelation is an option for selected patients.
Collapse
Affiliation(s)
- William C Palmer
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA.
| | - Prakash Vishnu
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - William Sanchez
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Bashar Aqel
- Department of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Doug Riegert-Johnson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Candido E Rivera
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
16
|
Laursen AH, Bjerrum OW, Friis-Hansen L, Hansen TO, Marott JL, Magnussen K. Causes of iron overload in blood donors - a clinical study. Vox Sang 2017; 113:110-119. [PMID: 29230833 DOI: 10.1111/vox.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Despite the obligate iron loss from blood donation, some donors present with hyperferritinaemia that can result from a wide range of acute and chronic conditions including hereditary haemochromatosis (HH). The objective of our study was to investigate the causes of hyperferritinaemia in the blood donor population and explore the value of extensive HH mutational analyses. MATERIALS AND METHODS Forty-nine consecutive donors (f = 6, m = 43) were included prospectively from the Capital Regional Blood Center. Inclusion criteria were a single ferritin value >1000 μg/l or repeated hyperferritinaemia with at least one value >500 μg/l. All donors were questioned about their medical history and underwent a physical examination, biochemical investigations and next-generation sequencing of HH-related genes, including the HFE gene, the haemojuvelin gene (HFE2/HJV), the hepcidin gene (HAMP), the ferroportin 1 gene (SLC40A1) and the transferrin receptor 2 gene (TFR2). RESULTS Forty of 49 donors were mutation positive with a combined 69 mutations, 54 of which were located in the HFE gene. There were 11 mutations in the TFR2 gene, two mutations in the HFE2 gene and two mutations in the HAMP gene. Only four donors had apparent alternative causes of hyperferritinaemia. CONCLUSION HH-related mutations were the most frequent cause of hyperferritinaemia in a Danish blood donor population, and it appears that several different HH-genotypes can contribute to hyperferritinaemia. HH screening in blood donors with high ferritin levels could be warranted. HH-related iron overload should not in itself result in donor ineligibility.
Collapse
Affiliation(s)
- A H Laursen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - O W Bjerrum
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - L Friis-Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Biochemistry, Nordsjaellands Hospital, Hillerod, Denmark
| | - T O Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - J L Marott
- The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen, Denmark
| | - K Magnussen
- Blood Centre Lab, Hvidovre Hospital, Hvidovre, Denmark.,Department of Immunology and Transfusion Medicine, Sorlandet hospital Kristiansand, Kristiansand, Norway
| |
Collapse
|
17
|
Piubelli C, Castagna A, Marchi G, Rizzi M, Busti F, Badar S, Marchetti M, De Gobbi M, Roetto A, Xumerle L, Suku E, Giorgetti A, Delledonne M, Olivieri O, Girelli D. Identification of new BMP6 pro-peptide mutations in patients with iron overload. Am J Hematol 2017; 92:562-568. [PMID: 28335084 DOI: 10.1002/ajh.24730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/09/2017] [Accepted: 03/18/2017] [Indexed: 12/16/2022]
Abstract
Hereditary Hemochromatosis (HH) is a genetically heterogeneous disorder caused by mutations in at least five different genes (HFE, HJV, TFR2, SLC40A1, HAMP) involved in the production or activity of the liver hormone hepcidin, a key regulator of systemic iron homeostasis. Nevertheless, patients with an HH-like phenotype that remains completely/partially unexplained despite extensive sequencing of known genes are not infrequently seen at referral centers, suggesting a role of still unknown genetic factors. A compelling candidate is Bone Morphogenetic Protein 6 (BMP6), which acts as a major activator of the BMP-SMAD signaling pathway, ultimately leading to the upregulation of hepcidin gene transcription. A recent seminal study by French authors has described three heterozygous missense mutations in BMP6 associated with mild to moderate late-onset iron overload (IO). Using an updated next-generation sequencing (NGS)-based genetic test in IO patients negative for the classical HFE p.Cys282Tyr mutation, we found three BMP6 heterozygous missense mutations in four patients from three different families. One mutation (p.Leu96Pro) has already been described and proven to be functional. The other two (p.Glu112Gln, p.Arg257His) were novel, and both were located in the pro-peptide domain known to be crucial for appropriate BMP6 processing and secretion. In silico modeling also showed results consistent with their pathogenetic role. The patients' clinical phenotypes were similar to that of other patients with BMP6-related IO recently described. Our results independently add further evidence to the role of BMP6 mutations as likely contributing factors to late-onset moderate IO unrelated to mutations in the established five HH genes.
Collapse
Affiliation(s)
- Chiara Piubelli
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Annalisa Castagna
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Giacomo Marchi
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Monica Rizzi
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Fabiana Busti
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Sadaf Badar
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Monia Marchetti
- Hematology section, Oncology Unit; Azienda Sanitaria Locale, Ospedale “Cardinal Massaia”; Asti Italy
| | - Marco De Gobbi
- Department of Clinical and Biological Sciences; University of Turin, Azienda Ospedaliera Universitaria San Luigi Gonzaga; Orbassano Turin Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences; University of Turin, Azienda Ospedaliera Universitaria San Luigi Gonzaga; Orbassano Turin Italy
| | - Luciano Xumerle
- Department of Biotechnology; University of Verona; Verona Italy
| | - Eda Suku
- Department of Biotechnology; University of Verona; Verona Italy
| | | | | | - Oliviero Olivieri
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Domenico Girelli
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| |
Collapse
|
18
|
Affiliation(s)
- Paul C Adams
- a Department of Medicine , University Hospital , London , Ontario , Canada
| |
Collapse
|
19
|
Lanktree MB, Sadikovic B, Waye JS, Levstik A, Lanktree BB, Yudin J, Crowther MA, Pare G, Adams PC. Clinical evaluation of a hemochromatosis next-generation sequencing gene panel. Eur J Haematol 2016; 98:228-234. [DOI: 10.1111/ejh.12820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine; Western University; London ON Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - Alexander Levstik
- Department of Pathology and Laboratory Medicine; Western University; London ON Canada
| | | | - Jovana Yudin
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - Mark A. Crowther
- Department of Medicine; McMaster University; Hamilton ON Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - Guillaume Pare
- Department of Medicine; McMaster University; Hamilton ON Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - Paul C. Adams
- Department of Medicine; Western University; London ON Canada
| |
Collapse
|