1
|
Wu J, Yan H, Xiang C. Wilms' tumor gene 1 in hematological malignancies: friend or foe? Hematology 2023; 28:2254557. [PMID: 37668240 DOI: 10.1080/16078454.2023.2254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Wilms' tumor gene 1 (WT1) is a transcription and post-translational factor that has a crucial role in the biological and pathological processes of several human malignancies. For hematological malignancies, WT1 overexpression or mutation has been found in leukemia and myelodysplastic syndrome. About 70-90% of acute myeloid leukemia patients showed WT1 overexpression, and 6-15% of patients carried WT1 mutations. WT1 has been widely regarded as a marker for monitoring minimal residual disease in acute myeloid leukemia. Many researchers were interested in developing WT1 targeting therapy. In this review, we summarized biological and pathological functions, correlation with other genes and clinical features, prognosis value and targeting therapy of WT1 in hematological features.
Collapse
Affiliation(s)
- Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an and Huai'an Hospital Affiliated to Yangzhou University, Huai'an, People's Republic of China
| | - Hui Yan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Chunli Xiang
- Department of General Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
2
|
WT1 Gene Mutations, rs16754 Variant, and WT1 Overexpression as Prognostic Factors in Acute Myeloid Leukemia Patients. J Clin Med 2022; 11:jcm11071873. [PMID: 35407481 PMCID: PMC9000045 DOI: 10.3390/jcm11071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: The aim of our study was the complex assessment of WT1 variants and their expression in relation to chromosomal changes and molecular prognostic markers in acute myeloid leukemia (AML). It is the first multidimensional study in Polish AML patients; (2) Methods: Bone marrow aspirates of 90 AML patients were used for cell cultures (banding techniques and fluorescence in situ hybridization), and to isolate DNA (WT1 genotyping, array comparative genomic hybridization), and RNA (WT1 expression). Peripheral blood samples from 100 healthy blood donors were used to analyze WT1 rs16754; (3) Results: Allele frequency and distribution of WT1 variant rs16754 (A;G) did not differ significantly among AML patients and controls. Higher expression of WT1 gene was observed in AA genotype (of rs16754) in comparison with GA or GG genotypes—10,556.7 vs. 25,836.5 copies (p = 0.01), respectively. WT1 mutations were more frequent in AML patients under 65 years of age (p < 0.0001) and affected relapse-free survival (RFS). The presence of NPM1 or CEBPA mutations decreased the risk of WT1 mutation presence, odds ratio (OR) = 0.11, 95% CI 0.02−0.46, p = 0.002 or OR = 0.05, 95% CI 0.006−0.46, p = 0.002, respectively. We observed significantly higher WT1 expression in AML CD34+ vs. CD34−, −20,985 vs. 8304 (p = 0.039), respectively. The difference in WT1 expression between patients with normal and abnormal karyotype was statistically insignificant; (4) Conclusions: WT1 gene expression and its rs16754 variant at diagnosis did not affect AML outcome. WT1 mutation may affect RFS in AML.
Collapse
|
3
|
Ngai LL, Kelder A, Janssen JJWM, Ossenkoppele GJ, Cloos J. MRD Tailored Therapy in AML: What We Have Learned So Far. Front Oncol 2021; 10:603636. [PMID: 33575214 PMCID: PMC7871983 DOI: 10.3389/fonc.2020.603636] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease associated with a dismal survival, partly due to the frequent occurrence of relapse. Many patient- and leukemia-specific characteristics, such as age, cytogenetics, mutations, and measurable residual disease (MRD) after intensive chemotherapy, have shown to be valuable prognostic factors. MRD has become a rich field of research where many advances have been made regarding technical, biological, and clinical aspects, which will be the topic of this review. Since many laboratories involved in AML diagnostics have experience in immunophenotyping, multiparameter flow cytometry (MFC) based MRD is currently the most commonly used method. Although molecular, quantitative PCR based techniques may be more sensitive, their disadvantage is that they can only be applied in a subset of patients harboring the genetic aberration. Next-generation sequencing can assess and quantify mutations in many genes but currently does not offer highly sensitive MRD measurements on a routine basis. In order to provide reliable MRD results, MRD assay optimization and standardization is essential. Different techniques for MRD assessment are being evaluated, and combinations of the methods have shown promising results for improving its prognostic value. In this regard, the load of leukemic stem cells (LSC) has also been shown to add to the prognostic value of MFC-MRD. At this moment, MRD after intensive chemotherapy is most often used as a prognostic factor to help stratify patients, but also to select the most appropriate consolidation therapy. For example, to guide post-remission treatment for intermediate-risk patients where MRD positive patients receive allogeneic stem cell transplantation and MRD negative receive autologous stem cell transplantation. Other upcoming uses of MRD that are being investigated include: selecting the type of allogeneic stem cell transplantation therapy (donor, conditioning), monitoring after stem cell transplantation (to allow intervention), and determining drug efficacy for the use of a surrogate endpoint in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
4
|
Stemler J, Koehler P, Maurer C, Müller C, Cornely OA. Antifungal prophylaxis and novel drugs in acute myeloid leukemia: the midostaurin and posaconazole dilemma. Ann Hematol 2020; 99:1429-1440. [PMID: 32514626 PMCID: PMC7316674 DOI: 10.1007/s00277-020-04107-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
With the advent of new targeted drugs in hematology and oncology patient prognosis is improved. Combination with antifungal prophylaxis challenges clinicians due to pharmacological profiles prone to drug–drug interactions (DDI). Midostaurin is a novel agent for FLT3-TKD/-ITDmut-acute myeloid leukemia (AML) and metabolized via cytochrome P450 3A4 (CYP3A4). Posaconazole is a standard of care antifungal agent used for prophylaxis during induction treatment of AML and a strong CYP3A4 inhibitor. Concomitant administration of both drugs leads to elevated midostaurin exposure. Both drugs improve overall survival at low numbers needed to treat. The impact of CYP3A4-related DDI remains to be determined. Severe adverse events have been observed; however, it remains unclear if they can be directly linked to DDI. The lack of prospective clinical studies assessing incidence of invasive fungal infections and clinical impact of DDI contributes to neglecting live-saving antifungal prophylaxis. Management strategies to combine both drugs have been proposed, but evidence on which approach to use is scarce. In this review, we discuss several approaches in the specific clinical setting of concomitant administration of midostaurin and posaconazole and give examples from everyday clinical practice. Therapeutic drug monitoring will become increasingly important to individualize and personalize antineoplastic concomitant and antifungal treatment in the context of DDI. Pharmaceutical companies addressing the issue in clinical trials may take a pioneer role in this field. Other recently developed and approved drugs for the treatment of AML likely inhere potential of DDI marking a foreseeable issue in future treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jannik Stemler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Philipp Koehler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christian Maurer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Carsten Müller
- Centre of Pharmacology, Therapeutic Drug Monitoring, Faculty of Medicine, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany. .,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Molecular Minimal Residual Disease Testing in Acute Myeloid Leukemia: A Review for the Practicing Clinician. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:636-647. [PMID: 30006258 DOI: 10.1016/j.clml.2018.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022]
Abstract
Minimal residual disease (MRD) testing in acute myeloid leukemia is increasingly being used to assess treatment response and stratify the risk of relapse for individual patients. Molecular methods for MRD testing began with PCR-based assays for individual recurrent mutations. To date, there is robust evidence for testing NPM1, CBFB-MYH11, and RUNX1/RUNXT1 mutations using this approach, though the best timing and threshold level for each mutation varies. More recent approaches have been with PCR-based multigene panels, occasionally combined with flow cytometric techniques, and next-generation sequencing techniques. This review outlines the various techniques used in molecular approaches to MRD, the evidence behind individual mutation testing, and the novel approaches for evaluating multigene MRD so that clinicians can understand and incorporate these evaluations into their practice.
Collapse
|