1
|
Demoen L, Matthijssens F, Reunes L, Palhais B, Lintermans B, T’Sas S, Fijalkowski I, Taminau J, Akele MZ, Van Belle S, Taghon T, Deforce D, Van Nieuwerburgh F, Berx G, Ntziachristos P, Debyser Z, Durinck K, Pieters T, Goossens S, Van Vlierberghe P. A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2024; 10:eado6765. [PMID: 39485844 PMCID: PMC11529709 DOI: 10.1126/sciadv.ado6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current intensified therapeutic protocols coincide with severe side effects, and no salvage therapy is available for primary therapy-resistant or relapsed patients. This highlights the need to identify new therapeutic targets in T-ALL. PSIP1, dispensable for normal hematopoiesis, is a dependency factor in KMT2A-rearranged myeloid leukemia. Nonetheless, loss-of-function mutations suggest a tumor suppressor role for PSIP1 in T-ALL. Here, we demonstrate that the loss of Psip1 accelerates T-ALL initiation in mice which we correlated with reduced H3K27me3 binding. Contrastingly, loss of PSIP1 impaired cell proliferation in several T-ALL cell lines. In cell lines, PSIP1 down-regulation leads to a reduction of COX20, an assembly factor of the cytochrome c oxidase in the mitochondria, and to a reduction in mitochondrial respiration. This indicates that PSIP1 can exert a dual role in the context of T-ALL, either as a tumor suppressor gene during tumor initiation or as a dependency factor in tumor maintenance.
Collapse
Affiliation(s)
- Lisa Demoen
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Filip Matthijssens
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Lindy Reunes
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Bruno Palhais
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Béatrice Lintermans
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Sara T’Sas
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Joachim Taminau
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Muluembet Z. Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- T Cell Team Taghon, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Panagiotis Ntziachristos
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Kaat Durinck
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Pediatric Precision Oncology Lab, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tim Pieters
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Meyers S, Gielen O, Cools J, Demeyer S. Single-cell CRISPR screening characterizes transcriptional deregulation in T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:3167-3181. [PMID: 38813729 PMCID: PMC11443379 DOI: 10.3324/haematol.2023.284901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of leukemia caused by accumulation of multiple genetic alterations in T-cell progenitors. However, for many genes it remains unknown how their mutations contribute to disease development. We therefore performed two single-cell CRISPR screens in primary pro-T cells ex vivo to study the transcriptional impact of loss-of-function alterations in T-ALL and correlate this with effects on cell fitness. The various perturbations were clustered based on their effects on E2F/MYC or STAT/NOTCH signatures, which play a defining role in driving T-cell proliferation. Many of the perturbations resulted in positive effects on the STAT and NOTCH signatures and were predicted to behave as haploinsufficient tumor suppressors in T-ALL. Additionally, Spi1 was identified as an essential gene for pro-T-cell survival, associated with deregulation of the MYC signature and epigenetic consequences. In contrast, Bcl11b was identified as a strong tumor suppressor gene in immature T lymphocytes, associated with deregulation of NF-kB and JAK/STAT signaling. We found a correlation between BCL11B expression level and JAK/STAT pathway mutations in T-ALL patients and demonstrated oncogenic cooperation between Bcl11b inactivation and JAK3 hyperactivation in pro-T cells. Altogether, these single-cell CRISPR screens in pro-T cells provide fundamental insights into the mechanisms of transcriptional deregulation caused by genetic alterations in T-ALL.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| |
Collapse
|
3
|
Risinskaya N, Abdulpatakhov A, Chabaeva Y, Aleshina O, Gladysheva M, Nikulina E, Bolshakov I, Yushkova A, Dubova O, Vasileva A, Obukhova T, Julhakyan H, Kapranov N, Galtseva I, Kulikov S, Sudarikov A, Parovichnikova E. Biallelic Loss of 7q34 ( TRB) and 9p21.3 ( CDKN2A/ 2B) in Adult Ph-Negative Acute T-Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:10482. [PMID: 39408811 PMCID: PMC11477120 DOI: 10.3390/ijms251910482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Tumor cells of acute lymphoblastic leukemia (ALL) may have various genetic abnormalities. Some of them lead to a complete loss of certain genes. Our aim was to reveal biallelic deletions of genes in Ph-negative T-ALL. Chromosomal microarray analysis (CMA) was performed for 47 patients with de novo Ph-negative T-ALL, who received treatment according to RALL-2016m clinical protocol at the National Medical Research Center for Hematology (Moscow, Russia) from 2017 to 2023. Out of forty-seven patients, only three had normal molecular karyotype. The other 44 patients had multiple gains, losses, and copy neutral losses of heterozygosity. Biallelic losses were found in 14 patients (30%). In ten patients (21%), a biallelic deletion of 9p21.3 involved a different number of genes, however CDKN2A gene loss was noted in all ten cases. For seven patients (15%), a biallelic deletion of 7q34 was found, including two genes-PRSS1, PRSS2 located within the T-cell receptor beta (TRB) locus. A clonal rearrangement of the TRB gene was revealed in 6 out of 7 cases with 7q34 biallelic loss. Both biallelic deletions can be considered favorable prognostic factors, with an association with 9p21 being statistically significant (p = 0.01) and a trend for 7q34 (p = 0.12) being observed.
Collapse
Affiliation(s)
- Natalya Risinskaya
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Abdulpatakh Abdulpatakhov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Yulia Chabaeva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Olga Aleshina
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Maria Gladysheva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Elena Nikulina
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Ivan Bolshakov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Anna Yushkova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Olga Dubova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia Vasileva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Tatiana Obukhova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Hunan Julhakyan
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Nikolay Kapranov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Irina Galtseva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Sergey Kulikov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Andrey Sudarikov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| | - Elena Parovichnikova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (A.A.); (Y.C.); (O.A.); (M.G.); (E.N.); (I.B.); (A.Y.); (O.D.); (A.V.); (T.O.); (H.J.); (N.K.); (I.G.); (S.K.); (A.S.)
| |
Collapse
|
4
|
Hu X, Wang Z, Qin Y, Xu J, Xu N, Wang Q, Lin R, Zhao K, Zhou H, Xuan L, Yu S, Liu Q. Allogeneic haematopoietic stem cell transplantation might overcome the poor prognosis of adolescents and adult patients with T-lineage acute lymphoblastic leukaemia and CDKN2 deletion. Bone Marrow Transplant 2024; 59:1146-1153. [PMID: 38769349 DOI: 10.1038/s41409-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
This study delves into the clinical implications of cyclin-dependent kinase inhibitor 2 (CDKN2) deletion in adult T-lineage acute lymphoblastic leukemia (T-ALL). Among 241 patients included in this study, 57 had CDKN2 deletion and 184 had CDKN2 wild-type (WT), and 165 underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) and 76 did not undergo allo-HSCT. CDKN2 deletion correlated with higher white blood cell count, more high-risk diseases, and complex karyotype. The 5-year overall survival (OS) was 36.8% and 58.2% (P < 0.001), 5-year disease-free survival (DFS) was 47.1% and 59.3% (P = 0.018), and 5-year cumulative incidence of relapse (CIR) was 33.7% and 22.3% (P = 0.019) in patients with CDKN2 deletion and WT, respectively. Multivariate analysis identified CDKN2 deletion as an independent adverse prognostic factor for OS (HR 2.11, P = 0.003). In the CDKN2 deletion subgroup, landmark analysis showed that the 5-year OS was 56.7% and 19% (P = 0.002) for patients who underwent allo-HSCT and those who did not, respectively. And multivariate analysis confirmed the beneficial role of allo-HSCT in OS (HR 0.23, P < 0.001). In conclusion, CDKN2 deletion was associated with a poor prognosis in adult T-ALL, and allo-HSCT might be beneficial for this population.
Collapse
Affiliation(s)
- Xiaoshan Hu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yuting Qin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Xiao M, Zhou J, Zhu X, He Y, Wang F, Zhang Y, Mo X, Han W, Wang J, Wang Y, Chen H, Chen Y, Zhao X, Chang Y, Xu L, Liu K, Huang X, Zhang X. A prognostic score system in adult T-cell acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Bone Marrow Transplant 2024; 59:496-504. [PMID: 38267585 DOI: 10.1038/s41409-024-02211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Adult T-cell acute lymphoblastic leukemia (T-ALL) is highly aggressive with poor prognoses, while hematopoietic stem cell transplantation (HSCT) is a curable option. However, no transplant-specific prognostic model for adult T-ALL is available. We identified 301 adult T-ALL patients who received HSCT at our hospital between 2010 and 2022. These patients were randomly assigned at a 7:3 ratio to a derivation group of 210 patients and a validation group of 91 patients. Next, we developed a prognostic risk score system for adult T-ALL with HSCT, which we named COMM, including 4 predictors (central nervous system involvement, Non-CR1 (CR2+ or NR) at HSCT, minimal residual disease (MRD) ≥ 0.01% after first induction therapy, and MRD ≥ 0.01% before HSCT). Patients were categorized into three risk groups, low-risk (0), intermediate-risk (1-4), and high-risk (5-12), and their 3-year overall survival (OS) were 87.5% (95%CI, 78-93%), 65.7% (95%CI, 53-76%) and 20% (95%CI, 10-20%; P < 0.001), respectively. The area under the subject operating characteristic curve for 2-, 3- or 5-year OS in the derivation cohort and in the validation cohort were all greater than 0.75. Based on internal validation, COMM score system proved to be a reliable prognostic model that could discriminate and calibrate well. We expect that the first prognostic model in adults T-ALL after HSCT can provide a reference of prognostic consultation for patients and families, and also contribute to future research to develop risk adapted interventions for high-risk populations.
Collapse
Affiliation(s)
- Mengyu Xiao
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jianying Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jingzhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
6
|
Singh M, Sharma P, Bhatia P, Trehan A, Thakur R, Sreedharanunni S. Integrated analysis of transcriptome and genome variations in pediatric T cell acute lymphoblastic leukemia: data from north Indian tertiary care center. BMC Cancer 2024; 24:325. [PMID: 38459434 PMCID: PMC10924344 DOI: 10.1186/s12885-024-12063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with poor prognosis and inferior outcome. Although multiple studies have been perform on genomics of T-ALL, data from Indian sub-continent is scarce. METHODS In the current study we aimed to identify the genetic variability of T-ALL in an Indian cohort of pediatric (age ≤ 12 years) T-ALL patients (n = 25) by whole transcriptome sequencing along with whole exome sequencing and correlated the findings with clinical characteristics and disease outcome. RESULTS The median age was 7 years (range 3 -12 years). RNA sequencing revealed a definitive fusion event in 14 cases (56%) (including a novel fusions) with STIL::TAL1 in 4 (16%), followed by NUP21::ABL1, TCF7::SPI1, ETV6::HDAC8, LMO1::RIC3, DIAPH1::JAK2, SETD2::CCDC12 and RCBTB2::LPAR6 in 1 (4%) case each. Significant aberrant expression was noted in RAG1 (64%), RAG2 (80%), MYCN (52%), NKX3-1 (52%), NKX3-2 (32%), TLX3 (28%), LMO1 (20%) and MYB (16%) genes. WES data showed frequent mutations in NOTCH1 (35%) followed by WT1 (23%), FBXW7 (12%), KRAS (12%), PHF6 (12%) and JAK3 (12%). Nearly 88.2% of cases showed a deletion of CDKN2A/CDKN2B/MTAP genes. Clinically significant association of a better EFS and OS (p=0.01) was noted with RAG2 over-expression at a median follow up of 22 months, while a poor EFS (p=0.041) and high relapse rate (p=0.045) was observed with MYB over-expression. CONCLUSION Overall, the present study demonstrates the frequencies of transcriptomic and genetic alterations from Indian cohort of pediatric T-ALL and is a salient addition to current genomics data sets available in T-ALL.
Collapse
Affiliation(s)
- Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Sector -12, 160012, Chandigarh, India.
| | - Pankaj Sharma
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Sector -12, 160012, Chandigarh, India
| | - Prateek Bhatia
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Sector -12, 160012, Chandigarh, India
| | - Amita Trehan
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Sector -12, 160012, Chandigarh, India
| | - Rozy Thakur
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Sector -12, 160012, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Ampatzidou M, Papadhimitriou SI, Paisiou A, Paterakis G, Tzanoudaki M, Papadakis V, Florentin L, Polychronopoulou S. The Prognostic Effect of CDKN2A/2B Gene Deletions in Pediatric Acute Lymphoblastic Leukemia (ALL): Independent Prognostic Significance in BFM-Based Protocols. Diagnostics (Basel) 2023; 13:diagnostics13091589. [PMID: 37174980 PMCID: PMC10178600 DOI: 10.3390/diagnostics13091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most frequent genes affected in pediatric ALL is the CDKN2A/2B gene, acting as a secondary cooperating event and playing an important role in cell-cycle regulation and chemosensitivity. Despite its inclusion in combined CNA (copy-number alterations) classifiers, like the IKZF1plus entity and the UKALL CNA profile, the prognostic impact of the individual gene deletions outside the context of a combined CNA evaluation remains controversial. Addressing the CDKN2A/2B deletions' additive prognostic effect in current risk-stratification algorithms, we present a retrospective study of a Greek pediatric ALL cohort comprising 247 patients studied over a 24-year period (2000-2023). Herein, we provide insight regarding the correlation with disease features, MRD clearance, and independent prognostic significance for this ALL cohort treated with contemporary BFM-based treatment protocols. Within an extended follow-up time of 135 months, the presence of the CDKN2A/2B deletions (biallelic or monoallelic) was associated with inferior EFS rates (65.1% compared to 91.8% for the gene non-deleted subgroup, p < 0.001), with the relapse rate accounting for 22.2% and 5.9%, respectively (p < 0.001). The presence of the biallelic deletion was associated with the worst outcomes (EFS 57.2% vs. 89.6% in the case of any other status, monoallelic or non-deleted, p < 0.001). Survival differences were demonstrated for B-ALL cases (EFS 65.3% vs. 93.6% for the non-deleted B-ALL subgroup, p < 0.001), but the prognostic effect was not statistically significant within the T-ALL cohort (EFS 64.3 vs. 69.2, p = 0.947). The presence of the CDKN2A/2B deletions clearly correlated with inferior outcomes within all protocol-defined risk groups (standard risk (SR): EFS 66.7% vs. 100%, p < 0.001, intermediate risk (IR): EFS 77.1% vs. 97.9%, p < 0.001, high risk (HR): EFS 42.1% vs. 70.5% p < 0.001 for deleted vs non-deleted cases in each patient risk group); additionally, in this study, the presence of the deletion differentiated prognosis within both MRD-positive and -negative subgroups on days 15 and 33 of induction. In multivariate analysis, the presence of the CDKN2A/2B deletions was the most important prognostic factor for relapse and overall survival, yielding a hazard ratio of 5.2 (95% confidence interval: 2.59-10.41, p < 0.001) and 5.96 (95% confidence interval: 2.97-11.95, p < 0.001), respectively, designating the alteration's independent prognostic significance in the context of modern risk stratification. The results of our study demonstrate that the presence of the CDKN2A/2B deletions can further stratify all existing risk groups, identifying patient subgroups with different outcomes. The above biallelic deletions could be incorporated into future risk-stratification algorithms, refining MRD-based stratification. In the era of targeted therapies, future prospective controlled clinical trials will further explore the possible use of cyclin-dependent kinase inhibitors (CDKIs) in CDKN2A/2B-affected ALL pediatric subgroups.
Collapse
Affiliation(s)
- Mirella Ampatzidou
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Stefanos I Papadhimitriou
- Laboratory of Hematology, Unit of Molecular Cytogenetics, "G. Gennimatas" General Hospital, 11527 Athens, Greece
| | - Anna Paisiou
- Bone Marrow Transplantation Unit, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Georgios Paterakis
- Laboratory of Flow Cytometry, Department of Immunology, "G. Gennimatas" General Hospital, 11527 Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Lina Florentin
- Alfa Laboratory Diagnostic Center, YGEIA Hospital, 11524 Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (TAO), "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| |
Collapse
|
8
|
Outcomes of adult patients with early T-cell precursor (ETP) acute lymphoblastic leukemia/lymphoma (ALL) and non-ETP T-ALL. Int J Hematol 2023; 117:738-747. [PMID: 36757523 DOI: 10.1007/s12185-023-03546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Early T-cell precursor (ETP) acute lymphoblastic leukemia/lymphoma (ALL) is generally considered to be a high-risk subtype. We retrospectively analyzed the clinical outcomes of adult patients diagnosed with ETP-ALL or other T-cell ALL (non-ETP T-ALL). The subjects were 82 patients (ETP-ALL: n = 18, non-ETP T-ALL: n = 64) for whom relevant immunophenotype data needed for classification were available. ETP-ALL patients were older (median age, 50.5 vs. 33.5 years, P = 0.042) and had less mediastinal involvement (27.8 vs. 73.4%, P < 0.001). The rate of complete remission (CR) with the first induction therapy was significantly lower in the ETP group (33.3 vs. 64.0%, P = 0.03), but the CR rate within 2 cycles of chemotherapy did not differ significantly (61.1 vs. 76.6%, P = 0.232). The 3-year overall survival (OS) rate was also similar in both groups (43.2 vs. 45.8%, P = 0.992). The ETP phenotype had no impact on survival in the transplant group or the non-transplant group. A multivariate analysis identified the male sex as a poor prognostic factor (HR: 4.43, P < 0.01), but not the immunophenotype of ETP. The prognosis for adult patients with ETP-ALL was comparable to that of non-ETP T-ALL patients. However, further studies aimed at improving the remission rate for ETP-ALL are needed.
Collapse
|
9
|
Chen C, Zhou L, Zhu L, Luo G, Wang L, Zeng C, Zhou H, Li Y. TNFAIP3 mutation is an independent poor overall survival factor for patients with T-cell acute lymphoblastic leukemia. Cancer Med 2023; 12:3952-3961. [PMID: 36056685 PMCID: PMC9972139 DOI: 10.1002/cam4.5196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND It is imperative to explore potential biomarkers for predicting clinical outcome and developing targeted therapies for T-cell acute lymphoblastic leukemia (T-ALL). This study aimed to investigate the mutation patterns of tumor necrosis factor-alpha-inducing protein 3 (TNFAIP3, also known as A20) and its role in the prognosis of T-ALL patients. METHODS Polymerase chain reaction (PCR) and Sanger sequencing data from T-ALL (n = 49, JNU) and targeted sequencing data from T-ALL (n = 54, NFH) in our clinical center and a publicly available dataset (n = 121, PRJCA002270), were used to detect TNFAIP3 mutation. RESULTS Three TNFAIP3 single nucleotide polymorphisms (SNPs; g.3033 C > T, g.3910 G > A, and g.3904 A > G) were detected in T-ALL in the JNU dataset, and g.3033 C > T accounted for the highest proportion, reaching 60% (6/10). Interestingly, TNFAIP3 mutation mainly occurred in adults but not pediatric patients in all three datasets (JNU, NFH, and PRJCA002270). T-ALL patients carrying a TNFAIP3 mutation were associated with a trend of poor overall survival (OS) (p = 0.092). Moreover, TNFAIP3 mutation was also an independent factor for OS for T-ALL patients (p = 0.008). Further subgroup analysis suggested that TNFAIP3 mutation predicted poor OS for T-ALL patients who underwent chemotherapy only (p < 0.001), and it was positively correlated with high risk and early T-cell precursor ALL (ETP-ALL) in two independent validation datasets (NFH and PRJCA002270). CONCLUSION TNFAIP3 mutation mainly occurs in adult T-ALL patients, and it was associated with adverse clinical outcomes for T-ALL patients; thus, it might be a biomarker for prognostic stratification.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Zhu
- Department of Rheumatism and Immunology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
11
|
Feng J, Guo Y, Yang W, Zou Y, Zhang L, Chen Y, Zhang Y, Zhu X, Chen X. Childhood Acute B-Lineage Lymphoblastic Leukemia With CDKN2A/B Deletion Is a Distinct Entity With Adverse Genetic Features and Poor Clinical Outcomes. Front Oncol 2022; 12:878098. [PMID: 35712467 PMCID: PMC9195293 DOI: 10.3389/fonc.2022.878098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
To further emphasize the clinical-genetic features and prognosis of CDKN2A/B deletions in childhood acute lymphoblastic leukemia (ALL), we retrospectively analyzed 819 consecutive B-ALL patients treated with the Chinese Children's Cancer Group ALL-2015 (CCCG-ALL-2015) protocol, and fluorescence in situ hybridization (FISH) analysis on CDKN2A/B deletion was available for 599 patients. The prevalence of CDKN2A/B gene deletions was 20.2% (121/599) of B-ALL. CDKN2A/B deletions were significantly associated with older age, higher leukocyte counts, a higher percentage of hepatosplenomegaly, and a higher frequency of BCR-ABL (p < 0.05). Those patients achieved similar minimal residual disease (MRD) clearance and complete remission compared to patients without CDKN2A/B deletion. The CDKN2A/B deletions were correlated with inferior outcomes, including a 3-year event-free survival (EFS) rate (69.8 ± 4.6 vs. 89.2 ± 1.6%, p = 0.000) and a 3-year overall survival (OS) rate (89.4% ± 2.9% vs. 94.7% ± 1.1%, p = 0.037). In multivariable analysis, CDKN2A/B deletion was still an independent prognostic factor for EFS in total cohorts (p < 0.05). We also detected a multiplicative interaction between CDKN2A/B deletions and TP53 deletion on dismal prognosis (p-interaction < 0.05). In conclusion, CDKN2A/B deletion is associated with distinct characteristics and serves as a poor prognostic factor in pediatric ALL, especially in TP53 deletion carriers.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
12
|
Yin H, Hong M, Deng J, Yao L, Qian C, Teng Y, Li T, Wu Q. Prognostic Significance of Comprehensive Gene Mutations and Clinical Characteristics in Adult T-Cell Acute Lymphoblastic Leukemia Based on Next-Generation Sequencing. Front Oncol 2022; 12:811151. [PMID: 35280829 PMCID: PMC8908046 DOI: 10.3389/fonc.2022.811151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignant tumor with poor prognosis. However, accurate prognostic stratification factors are still unclear. Methods Data from 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) patients were collected. The association of gene mutations detected by next-generation sequencing and clinical characteristics with the outcomes of T-ALL/LBL patients were retrospectively analyzed to build three novel risk stratification models through Cox proportional hazards model. Results Forty-seven mutated genes were identified. Here, 73.3% of patients had at least one mutation, and 36.7% had ≥3 mutations. The genes with higher mutation frequency were NOTCH1, FBXW7, and DNMT3A. The most frequently altered signaling pathways were NOTCH pathway, transcriptional regulation pathway, and DNA methylation pathway. Age (45 years old), platelet (PLT) (50 G/L), actate dehydrogenase (LDH) (600 U/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and hematopoietic stem cell transplantation (HSCT) were integrated into a risk stratification model of event-free survival (EFS). Age (45 years old), white blood cell (WBC) count (30 G/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and HSCT were integrated into a risk stratification model of overall survival (OS). According to our risk stratification models, the 1-year EFS and OS rates in the low-risk group were significantly higher than those in the high-risk group. Conclusions Our risk stratification models exhibited good prognostic roles in adult T-ALL/LBL patients and might guide individualized treatment and ultimately improve their outcomes.
Collapse
Affiliation(s)
- Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Khazal S, Kebriaei P. Hematopoietic cell transplantation for acute lymphoblastic leukemia: review of current indications and outcomes. Leuk Lymphoma 2021; 62:2831-2844. [PMID: 34080951 DOI: 10.1080/10428194.2021.1933475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The treatment landscape for patients with acute lymphoblastic leukemia (ALL) is changing. Continued investigation into the biology of ALL, and broader use and more precise methods of measuring residual disease allow for improved risk stratification of patients and identification of the subset of patients at greatest risk of disease relapse and who may benefit from hematopoietic cell transplantation (HCT) in first complete remission. Further, recent advances in HCT preparative regimens, donor selection, graft manipulation, and graft-versus-host disease prophylaxis and treatment have resulted in fewer transplant-related morbidities and mortality and better survival outcomes. Finally, the development of effective immunotherapeutic salvage agents, such as the chimeric antigen receptor T-cell therapy, tisagenlecleucel, have significantly changed the treatment landscape of this disease, allowing patients with advanced disease to be considered for HCT with curative intent. In this review, we will provide an update on the indications and outcome of pediatric and adult ALL.
Collapse
Affiliation(s)
- Sajad Khazal
- Division of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|