1
|
Del Giudice I, Della Starza I, De Falco F, Gaidano G, Sportoletti P. Monitoring Response and Resistance to Treatment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:2049. [PMID: 38893168 PMCID: PMC11171231 DOI: 10.3390/cancers16112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The recent evolution in chronic lymphocytic leukemia (CLL) targeted therapies led to a progressive change in the way clinicians manage the goals of treatment and evaluate the response to treatment in respect to the paradigm of the chemoimmunotherapy era. Continuous therapies with BTK inhibitors achieve prolonged and sustained control of the disease. On the other hand, venetoclax and anti-CD20 monoclonal antibodies or, more recently, ibrutinib plus venetoclax combinations, given for a fixed duration, achieve undetectable measurable residual disease (uMRD) in the vast majority of patients. On these grounds, a time-limited MRD-driven strategy, a previously unexplored scenario in CLL, is being attempted. On the other side of the spectrum, novel genetic and non-genetic mechanisms of resistance to targeted treatments are emerging. Here we review the response assessment criteria, the evolution and clinical application of MRD analysis and the mechanisms of resistance according to the novel treatment strategies within clinical trials. The extent to which this novel evidence will translate in the real-life management of CLL patients remains an open issue to be addressed.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
- AIL Roma, ODV, 00161 Rome, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| |
Collapse
|
2
|
Stilgenbauer S, Tausch E, Roberts AW, Davids MS, Eichhorst B, Hallek M, Hillmen P, Schneider C, Schetelig J, Böttcher S, Kater AP, Jiang Y, Boyer M, Popovic R, Ghanim MT, Moran M, Sinai WJ, Wang X, Mukherjee N, Chyla B, Wierda WG, Seymour JF. Six-year follow-up and subgroup analyses of a phase 2 trial of venetoclax for del(17p) chronic lymphocytic leukemia. Blood Adv 2024; 8:1992-2004. [PMID: 38290108 PMCID: PMC11024923 DOI: 10.1182/bloodadvances.2023011741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT Chromosome 17p deletion (del[17p]) is associated with poor prognosis in patients with chronic lymphocytic leukemia (CLL). Venetoclax is approved for treatment of previously untreated and relapsed/refractory (R/R) CLL, including patients with del(17p), based on the open-label, multicenter, phase 2 M13-982 trial (NCT01889186). Here, we detail the 6-year follow-up analysis for M13-982. A total of 158 patients with previously untreated (n = 5) or R/R (n = 153) del(17p) CLL received 400 mg venetoclax daily after initial ramp-up until progressive disease. After a median follow-up of 70 months, the best objective response rate (ORR) was 77% (21% complete remission [CR] and 49% partial remission [PR]), with a median duration of response (DOR) of 39.3 months (95% confidence interval [CI], 31.1-50.5). The median progression-free survival (PFS) was 28.2 months (95% CI, 23.4-37.6), and median overall survival (OS) was 62.5 months (95% CI, 51.7-not reached), with 16% of patients remaining on treatment after 6 years. Multivariable analysis did not identify statistically significant correlation between patient subgroups defined by clinical or laboratory variables and ORR or PFS. The most common grade ≥3 adverse events were neutropenia (42%), infections (33%), anemia (16%), and thrombocytopenia (16%). Post hoc comparative analyses of PFS and OS from treatment initiation, from a 24-month landmark, and by minimal residual disease status were performed between patients with del(17p) in the M13-982 and MURANO studies in the interest of understanding these data in another context. These long-term data show the continued benefits of venetoclax in patients with del(17p) CLL. The trial was registered at www.clinicaltrials.gov as #NCT01889186.
Collapse
Affiliation(s)
| | - Eugen Tausch
- Division of CLL, Internal Medicine III, Ulm University, Ulm, Germany
| | - Andrew W. Roberts
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Barbara Eichhorst
- Department of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Michael Hallek
- Department of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Peter Hillmen
- Leeds Teaching Hospitals, NHS Trust, Leeds, United Kingdom
| | | | - Johannes Schetelig
- Medical Clinic I, Department of Hematology, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Böttcher
- Division of Internal Medicine, Medical Clinic III-Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Arnon P. Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John F. Seymour
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Woolston DW, Lee ND, Shadman M, Latorre-Esteves E, Tee XR, Fredrickson J, Kohrn BF, Ujjani C, Eckel A, Till B, Fang M, Radich J, Bozic I, Risques RA, Yeung CCS. Ultra-deep mutational landscape in chronic lymphocytic leukemia uncovers dynamics of resistance to targeted therapies. Haematologica 2024; 109:835-845. [PMID: 37706363 PMCID: PMC10905071 DOI: 10.3324/haematol.2023.283372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BTK inhibitors, Bcl-2 inhibitors, and other targeted therapies have significantly improved the outcomes of patients with chronic lymphocytic leukemia (CLL). With increased survivorship, monitoring disease and deciphering potential mechanisms of resistance to these agents are critical for devising effective treatment strategies. We used duplex sequencing, a technology that enables detection of mutations at ultra-low allelic frequencies, to identify mutations in five genes associated with drug resistance in CLL and followed their evolution in two patients who received multiple targeted therapies and ultimately developed disease progression on pirtobrutinib. In both patients we detected variants that expanded and reached significant cancer cell fractions (CCF). In patient R001, multiple known resistance mutations in both BTK and PLCG2 appeared following progression on zanubrutinib (BTK p.L528W, p.C481S; PLCG2 S707F, L845F, R665W, and D993H). In contrast, patient R002 developed multiple BTK mutations following acalabrutinib treatment, including known resistance mutations p.C481R, p.T474I and p.C481S. We found that pirtobrutinib was able to suppress, but not completely eradicate, BTK p.C481S mutations in both patients, but other resistance mutations such as mutations in PLCG2 and new BTK mutations increased while the patients were receiving pirtobrutinib. For example, BTK p.L528W in patient R001 increased in frequency more than 1,000-fold (from a CCF of 0.02% to 35%), and the CCF in p.T474I in patient R002 increased from 0.03% to 4.2% (more than 100-fold). Our data illuminate the evolutionary dynamics of resistant clones over the patients' disease course and under selective pressure from different targeted treatments.
Collapse
Affiliation(s)
| | | | - Mazyar Shadman
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington
| | | | | | | | | | - Chaitra Ujjani
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington
| | | | - Brian Till
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington
| | - Min Fang
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington
| | - Jerald Radich
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington
| | - Ivana Bozic
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington
| | | | - Cecilia C S Yeung
- Fred Hutchinson Cancer Center, Seattle, WA; University of Washington.
| |
Collapse
|
4
|
Jain N, Croner LJ, Allan JN, Siddiqi T, Tedeschi A, Badoux XC, Eckert K, Cheung LW, Mukherjee A, Dean JP, Szafer-Glusman E, Seymour JF. Absence of BTK, BCL2, and PLCG2 Mutations in Chronic Lymphocytic Leukemia Relapsing after First-Line Treatment with Fixed-Duration Ibrutinib plus Venetoclax. Clin Cancer Res 2024; 30:498-505. [PMID: 37955424 PMCID: PMC10831330 DOI: 10.1158/1078-0432.ccr-22-3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Mutations in BTK, PLCG2, and BCL2 have been reported in patients with progressive disease (PD) on continuous single-agent BTK or BCL2 inhibitor treatment. We tested for these mutations in samples from patients with PD after completion of first-line treatment with fixed-duration ibrutinib plus venetoclax for chronic lymphocytic leukemia (CLL) in the phase II CAPTIVATE study. PATIENTS AND METHODS A total of 191 patients completed fixed-duration ibrutinib plus venetoclax (three cycles of ibrutinib then 12-13 cycles of ibrutinib plus venetoclax). Genomic risk features [del(11q), del(13q), del(17p), trisomy 12, complex karyotype, unmutated IGHV, TP53 mutated] and mutations in genes recurrently mutated in CLL (ATM, BIRC3, BRAF, CHD2, EZH2, FBXW7, MYD88, NOTCH1, POT1, RPS15, SF3B1, XPO1) were assessed at baseline in patients with and without PD at data cutoff; gene variants and resistance-associated mutations in BTK, PLCG2, or BCL2 were evaluated at PD. RESULTS Of 191 patients completing fixed-duration ibrutinib plus venetoclax, with median follow-up of 38.9 months, 29 (15%) developed PD. No baseline risk feature or gene mutation was significantly associated with development of PD. No previously reported resistance-associated mutations in BTK, PLCG2, or BCL2 were detected at PD in 25 patients with available samples. Of the 29 patients with PD, 19 have required retreatment (single-agent ibrutinib, n = 16, or ibrutinib plus venetoclax, n = 3); 17 achieved partial response or better, 1 achieved stable disease, and 1 is pending response assessment. CONCLUSIONS First-line fixed-duration combination treatment with ibrutinib plus venetoclax may mitigate development of resistance mechanisms associated with continuous single-agent targeted therapies, allowing for effective retreatment. See related commentary by Al-Sawaf and Davids, p. 471.
Collapse
Affiliation(s)
- Nitin Jain
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa J. Croner
- AbbVie, North Chicago, Illinois
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, California
| | | | | | - Karl Eckert
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - Leo W.K. Cheung
- AbbVie, North Chicago, Illinois
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - Anwesha Mukherjee
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - James P. Dean
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - Edith Szafer-Glusman
- AbbVie, North Chicago, Illinois
- Pharmacyclics LLC, an AbbVie Company, South San Francisco, California
| | - John F. Seymour
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Khalsa JK, Cha J, Utro F, Naeem A, Murali I, Kuang Y, Vasquez K, Li L, Tyekucheva S, Fernandes SM, Veronese L, Guieze R, Sasi BK, Wang Z, Machado JH, Bai H, Alasfour M, Rhrissorrakrai K, Levovitz C, Danysh BP, Slowik K, Jacobs RA, Davids MS, Paweletz CP, Leshchiner I, Parida L, Getz G, Brown JR. Genetic events associated with venetoclax resistance in CLL identified by whole-exome sequencing of patient samples. Blood 2023; 142:421-433. [PMID: 37146250 PMCID: PMC10447490 DOI: 10.1182/blood.2022016600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.
Collapse
MESH Headings
- Humans
- Antineoplastic Agents/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Drug Resistance, Neoplasm/genetics
- Exome Sequencing
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2
Collapse
Affiliation(s)
- Jasneet Kaur Khalsa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Justin Cha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Aishath Naeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ishwarya Murali
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kevin Vasquez
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | - Liang Li
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Svitlana Tyekucheva
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard TH Chan School of Public Health, Boston, MA
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, France
- EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Romain Guieze
- EA7453 CHELTER, Université Clermont Auvergne, Clermont-Ferrand, France
- Service d’Hématologie clinique et thérapie cellulaire, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Binu Kandathilparambil Sasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Zixu Wang
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard TH Chan School of Public Health, Boston, MA
| | - John-Hanson Machado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Harrison Bai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Maryam Alasfour
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Brian P. Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kara Slowik
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raquel A. Jacobs
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Gad Getz
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Thomalla D, Beckmann L, Grimm C, Oliverio M, Meder L, Herling C, Nieper P, Feldmann T, Merkel O, Lorsy E, da Palma Guerreiro A, von Jan J, Kisis I, Wasserburger E, Claasen J, Faitschuk-Meyer E, Altmüller J, Nürnberg P, Yang TP, Lienhard M, Herwig R, Kreuzer KA, Pallasch C, Büttner R, Schäfer S, Hartley J, Abken H, Peifer M, Kashkar H, Knittel G, Eichhorst B, Ullrich R, Herling M, Reinhardt H, Hallek M, Schweiger M, Frenzel L. Deregulation and epigenetic modification of BCL2-family genes cause resistance to venetoclax in hematologic malignancies. Blood 2022; 140:2113-2126. [PMID: 35704690 PMCID: PMC10653032 DOI: 10.1182/blood.2021014304] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
The BCL2 inhibitor venetoclax has been approved to treat different hematological malignancies. Because there is no common genetic alteration causing resistance to venetoclax in chronic lymphocytic leukemia (CLL) and B-cell lymphoma, we asked if epigenetic events might be involved in venetoclax resistance. Therefore, we employed whole-exome sequencing, methylated DNA immunoprecipitation sequencing, and genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 screening to investigate venetoclax resistance in aggressive lymphoma and high-risk CLL patients. We identified a regulatory CpG island within the PUMA promoter that is methylated upon venetoclax treatment, mediating PUMA downregulation on transcript and protein level. PUMA expression and sensitivity toward venetoclax can be restored by inhibition of methyltransferases. We can demonstrate that loss of PUMA results in metabolic reprogramming with higher oxidative phosphorylation and adenosine triphosphate production, resembling the metabolic phenotype that is seen upon venetoclax resistance. Although PUMA loss is specific for acquired venetoclax resistance but not for acquired MCL1 resistance and is not seen in CLL patients after chemotherapy-resistance, BAX is essential for sensitivity toward both venetoclax and MCL1 inhibition. As we found loss of BAX in Richter's syndrome patients after venetoclax failure, we defined BAX-mediated apoptosis to be critical for drug resistance but not for disease progression of CLL into aggressive diffuse large B-cell lymphoma in vivo. A compound screen revealed TRAIL-mediated apoptosis as a target to overcome BAX deficiency. Furthermore, antibody or CAR T cells eliminated venetoclax resistant lymphoma cells, paving a clinically applicable way to overcome venetoclax resistance.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- bcl-2-Associated X Protein/metabolism
- Drug Resistance, Neoplasm/genetics
- Apoptosis Regulatory Proteins/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/pathology
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Epigenesis, Genetic
Collapse
Affiliation(s)
- D. Thomalla
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - L. Beckmann
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - C. Grimm
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - M. Oliverio
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - L. Meder
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - C.D. Herling
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Clinic of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - P. Nieper
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - T. Feldmann
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
| | - O. Merkel
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - E. Lorsy
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - A. da Palma Guerreiro
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - J. von Jan
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - I. Kisis
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - E. Wasserburger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
| | - J. Claasen
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - J. Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - P. Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - T.-P. Yang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center of Integrated Oncology Cologne-Bonn, Medical Faculty, Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - M. Lienhard
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - R. Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - K.-A. Kreuzer
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - C.P. Pallasch
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - R. Büttner
- Department of Pathology, University of Cologne, Cologne, Germany
| | - S.C. Schäfer
- Department of Pathology, University of Cologne, Cologne, Germany
- Institut für Pathologie im Medizin Campus Bodensee, Friedrichshafen, Germany
| | - J. Hartley
- RCI, Regensburg Center for Interventional Immunology, University Hospital of Regensburg, Regensburg, Germany
| | - H. Abken
- RCI, Regensburg Center for Interventional Immunology, University Hospital of Regensburg, Regensburg, Germany
| | - M. Peifer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center of Integrated Oncology Cologne-Bonn, Medical Faculty, Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - H. Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Molecular Immunologie, University of Cologne, Cologne, Germany
| | - G. Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
| | - B. Eichhorst
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - R.T. Ullrich
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - M. Herling
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Clinic of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - H.C. Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
| | - M. Hallek
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - M.R. Schweiger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - L.P. Frenzel
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Bennett R, Thompson E, Tam C. SOHO State of the Art Updates and Next Questions | Mechanisms of Resistance to BCL2 Inhibitor Therapy in Chronic Lymphocytic Leukemia and Potential Future Therapeutic Directions. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:795-804. [PMID: 35970756 DOI: 10.1016/j.clml.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) constitutively overexpresses B-cell lymphoma 2 (BCL2) with consequent dysregulation of intrinsic apoptosis leading to abnormal cellular survival. Therapeutic use of BCL2 inhibitors (BCL2i, eg, venetoclax) in CLL, as both continuous monotherapy or in fixed duration combination, has translated scientific rationale into clinical benefit with significant rates of complete responses, including those without detectable minimal residual disease. Unlike with chemotherapy, response rates to venetoclax do not appear to be influenced by pre-existing chromosomal abnormalities or somatic mutations present, although the duration of response observed remains shorter for those with traditional higher risk genetic aberrations. This review seeks to describe both the disease factors that influence primary venetoclax sensitivity/resistance and those resistance mechanisms that may be acquired secondary to BCL2i therapy in CLL. Baseline venetoclax-sensitivity or -resistance is influenced by the expression of BCL2 relative to other BCL2 family member proteins, microenvironmental factors including nodal T-cell stimulation, and tumoral heterogeneity. With selection pressure applied by continuous venetoclax exposure, secondary resistance mechanisms develop in oligoclonal fashion. Those mechanisms described include acquisition of BCL2 variants, dynamic aberrations of alternative BCL2 family proteins, and mutations affecting both BAX and other BH3 proteins. In view of the resistance described, this review also proposes future applications of BCL2i therapy in CLL and potential means by which BCL2i-resistance may be abrogated.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- bcl-2-Associated X Protein/pharmacology
- Drug Resistance, Neoplasm
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Rory Bennett
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Ella Thompson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Constantine Tam
- Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Thus YJ, Eldering E, Kater AP, Spaargaren M. Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma. Leukemia 2022; 36:2165-2176. [PMID: 35725771 PMCID: PMC9418002 DOI: 10.1038/s41375-022-01627-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Mantle cell lymphoma (MCL), an aggressive, but incurable B-cell lymphoma, is genetically characterized by the t(11;14) translocation, resulting in the overexpression of Cyclin D1. In addition, deregulation of the B-cell lymphoma-2 (BCL-2) family proteins BCL-2, B-cell lymphoma-extra large (BCL-XL), and myeloid cell leukemia-1 (MCL-1) is highly common in MCL. This renders these BCL-2 family members attractive targets for therapy; indeed, the BCL-2 inhibitor venetoclax (ABT-199), which already received FDA approval for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML), shows promising results in early clinical trials for MCL. However, a significant subset of patients show primary resistance or will develop resistance upon prolonged treatment. Here, we describe the underlying mechanisms of venetoclax resistance in MCL, such as upregulation of BCL-XL or MCL-1, and the recent (clinical) progress in the development of inhibitors for these BCL-2 family members, followed by the transcriptional and (post-)translational (dys)regulation of the BCL-2 family proteins, including the role of the lymphoid organ microenvironment. Based upon these insights, we discuss how rational combinations of venetoclax with other therapies can be exploited to prevent or overcome venetoclax resistance and improve MCL patient outcome.
Collapse
Affiliation(s)
- Yvonne J Thus
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Arnon P Kater
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|