1
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Jiang YH, Martinez JE, Ou Z, Cooper ML, Kang SHL, Pursley A, Cheung SW. De novo and complex imbalanced chromosomal rearrangements revealed by array CGH in a patient with an abnormal phenotype and apparently "balanced" paracentric inversion of 14(q21q23). Am J Med Genet A 2008; 146A:1986-93. [PMID: 18627051 DOI: 10.1002/ajmg.a.32408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Paracentric inversions are one of the common chromosomal rearrangements typically associated with a normal phenotype. However, if dosage-sensitive genes are disrupted by the breakpoints, an abnormal phenotype could result. Detection of paracentric inversions often relies on careful high resolution banding, which has limited sensitivity. We report here cytogenetic studies performed on a 4-year-old female patient with global developmental delay, hypotonia, and dysmorphic features. The initial cytogenetic evaluation by G-banding revealed a de novo inversion of chromosome 14. Subsequent array CGH analysis using both a targeted BAC array and a high-resolution oligonucleotide array revealed microdeletions at the breakpoints of 14q21.1 (0.8 Mb) and 14q23.1 (0.9 Mb). Unexpectedly, a microdeletion in the region of 16q23.1 (1.3 Mb) was also identified, which overlaps with the common fragile site FRA16D. Parental chromosome and FISH analyses were normal, supporting the conclusion that these microdeletions were de novo in the patient and likely contributed to her abnormal phenotype. The case report presented illustrates the value of using high-resolution microarray analysis for phenotypically abnormal individuals with apparently balanced chromosomal rearrangements, including inversions.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Jenkins EC, Genovese MJ, Duncan CJ, Gu H, Stark-Houck SL, Lele K, Li SY, Krawczun MS. Fra(X)(q27.2), the common fragile site, observed in only one of 760 cases studied for the fragile X syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1992; 43:136-41. [PMID: 1605182 DOI: 10.1002/ajmg.1320430121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell cultures from 760 whole blood, amniotic fluid, chorionic villus sample, and peripheral umbilical blood sample specimens were exposed to multiple fra(X)(q27.3) induction systems (none had aphidicolin). Fifty-three exhibited the rare fragile site, fra(X)(q27.3) or FRAXA, none of which demonstrated the common fragile site or FRAXD at band Xq27.2. Only one cell in one of the negative whole blood FUdR-treated cultures from a mentally retarded male showed FRAXD. Therefore, it appears that FRAXD occurs very rarely in cultures treated to induce FRAXA since only one positive cell was observed in over 88,000 analyzed. It appears that very low frequencies of fra(X)(q27) can be accounted for only in part by the presence of the common fragile site since only one of 9 cases, each with one fra(X)(q27) positive cell, exhibited FRAXD and the others were FRAXA. After confirmation of FRAXA with direct DNA testing in a large number of low frequency cases, it should be possible to rely on the detection of very low frequencies of fra(X)(q27.3), e.g., 1% with at least 2 positive cells.
Collapse
Affiliation(s)
- E C Jenkins
- Department of Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | | | | | | | | | |
Collapse
|