1
|
A unique Smith-Magenis patient with a de novo intragenic deletion on the maternally inherited overexpressed RAI1 allele. Eur J Hum Genet 2022; 30:1233-1238. [PMID: 35821519 PMCID: PMC9626456 DOI: 10.1038/s41431-022-01143-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/01/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
RAI1 is a dosage-sensitive gene whose decreased or increased expression by recurrent and non-recurrent 17p11.2 deletions or duplications causes Smith-Magenis (SMS) or Potocki-Lupski syndromes (PTLS), respectively. Here we report on a 21-year-old female patient showing SMS phenotype who was found to carry a 3.4 kb de novo intragenic RAI1 deletion. Interestingly, a significant increase in RAI1 transcript levels was identified in the patient's, brother's and mother's peripheral blood cells. Allele-specific dosage analysis revealed that the patient's maternally inherited overexpressed RAI1 allele harbors the intragenic deletion, confirming the SMS diagnosis due to the presence of a single wild-type RAI1 functional allele. The mother and brother do not present any PTLS neurologic/behavioral clinical features. Extensive sequencing of RAI1 promoter and predicted regulatory regions showed no potential causative variants accounting for gene overexpression. However, the mother and both children share a novel private missense variant in RAI1 exon 3, currently classified as a VUS (uncertain significance), though predicted by two bioinformatic tools to disrupt the binding site of one specific transcription factor. The reported familial case, the second showing RAI1 overexpression in the absence of RAI1 duplication, may help to understand the regulation of RAI1 dosage sensitivity although its phenotypic effect remains to be determined.
Collapse
|
2
|
Kuroda Y, Ritter A, Mullegama SV, Izumi K. Mosaic RAI1 variant in a Smith-Magenis syndrome patient with total anomalous pulmonary venous return. Am J Med Genet A 2022; 188:3130-3134. [PMID: 35833697 DOI: 10.1002/ajmg.a.62907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Yukiko Kuroda
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alyssa Ritter
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Rinaldi B, Villa R, Sironi A, Garavelli L, Finelli P, Bedeschi MF. Smith-Magenis Syndrome—Clinical Review, Biological Background and Related Disorders. Genes (Basel) 2022; 13:genes13020335. [PMID: 35205380 PMCID: PMC8872351 DOI: 10.3390/genes13020335] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Smith-Magenis syndrome (SMS) is a complex genetic disorder characterized by distinctive physical features, developmental delay, cognitive impairment, and a typical behavioral phenotype. SMS is caused by interstitial 17p11.2 deletions (90%), encompassing multiple genes and including the retinoic acid-induced 1 gene (RAI1), or by pathogenic variants in RAI1 itself (10%). RAI1 is a dosage-sensitive gene expressed in many tissues and acting as transcriptional regulator. The majority of individuals exhibit a mild-to-moderate range of intellectual disability. The behavioral phenotype includes significant sleep disturbance, stereotypes, maladaptive and self-injurious behaviors. In this review, we summarize current clinical knowledge and therapeutic approaches. We further discuss the common biological background shared with other conditions commonly retained in differential diagnosis.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.R.); (R.V.)
| | - Roberta Villa
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.R.); (R.V.)
| | - Alessandra Sironi
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, 20145 Milan, Italy; (A.S.); (P.F.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090 Milan, Italy
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Palma Finelli
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, 20145 Milan, Italy; (A.S.); (P.F.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090 Milan, Italy
| | - Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.R.); (R.V.)
- Correspondence:
| |
Collapse
|
4
|
Onesimo R, Versacci P, Delogu AB, De Rosa G, Pugnaloni F, Blandino R, Leoni C, Calcagni G, Digilio MC, Zollino M, Marino B, Zampino G. Smith-Magenis syndrome: Report of morphological and new functional cardiac findings with review of the literature. Am J Med Genet A 2021; 185:2003-2011. [PMID: 33811726 DOI: 10.1002/ajmg.a.62196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Smith-Magenis syndrome (SMS) is a genetic disorder characterized by multiple congenital anomalies, sleep disturbance, behavioral impairment, and intellectual disability. Its genetic cause has been defined as an alteration in the Retinoic Acid-Induced 1 gene. Cardiac anomalies have been reported since the first description of this condition in patients with 17p11.2 deletion. Variable cardiac defects, including ventricular septal defects, atrial septal defects, tricuspid stenosis, mitral stenosis, tricuspid and mitral regurgitation, aortic stenosis, pulmonary stenosis, mitral valve prolapse, tetralogy of Fallot, and total anomalous pulmonary venous connection, have been anecdotally reported and systematic case series are still lacking. Herein, we define the spectrum of the cardiac phenotype and describe for the first time the cardiac function in a large cohort of pediatric patients with SMS. Revision of the literature and correlations between genotype and cardiac phenotype was performed.
Collapse
Affiliation(s)
- Roberta Onesimo
- Rare Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy.,Pediatric Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Gabriella De Rosa
- Pediatric Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Flaminia Pugnaloni
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Rita Blandino
- Pediatric Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Chiara Leoni
- Rare Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy.,Pediatric Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Maria C Digilio
- Medical Genetics Unit, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy.,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Zampino
- Rare Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy.,Pediatric Unit, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy.,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Rive Le Gouard N, Jacquinet A, Ruaud L, Deleersnyder H, Ageorges F, Gallard J, Lacombe D, Odent S, Mikaty M, Manouvrier-Hanu S, Ghoumid J, Geneviève D, Lehman N, Philip N, Edery P, Héron D, Rastel C, Chancenotte S, Thauvin-Robinet C, Faivre L, Perrin L, Verloes A. Smith-Magenis syndrome: Clinical and behavioral characteristics in a large retrospective cohort. Clin Genet 2021; 99:519-528. [PMID: 33368193 DOI: 10.1111/cge.13906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Smith-Magenis syndrome (SMS), characterized by dysmorphic features, neurodevelopmental disorder, and sleep disturbance, is due to an interstitial deletion of chromosome 17p11.2 (90%) or to point mutations in the RAI1 gene. In this retrospective cohort, we studied the clinical, cognitive, and behavioral profile of 47 European patients with SMS caused by a 17p11.2 deletion. We update the clinical and neurobehavioral profile of SMS. Intrauterine growth was normal in most patients. Prenatal anomalies were reported in 15%. 60% of our patients older than 10 years were overweight. Prevalence of heart defects (6.5% tetralogy of Fallot, 6.5% pulmonary stenosis), ophthalmological problems (89%), scoliosis (43%), or deafness (32%) were consistent with previous reports. Epilepsy was uncommon (2%). We identified a high prevalence of obstipation (45%). All patients had learning difficulties and developmental delay, but ID range was wide and 10% of patients had IQ in the normal range. Behavioral problems included temper tantrums and other difficult behaviors (84%) and night-time awakenings (86%). Optimal care of SMS children is multidisciplinary and requires important parental involvement. In our series, half of patients were able to follow adapted schooling, but 70% of parents had to adapt their working time, illustrating the medical, social, educative, and familial impact of having a child with SMS.
Collapse
Affiliation(s)
- Nicolas Rive Le Gouard
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Adeline Jacquinet
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France.,Department of Genetics, Sart Tilman University Hospital, Liège, Belgium
| | - Lyse Ruaud
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Hélène Deleersnyder
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Faustine Ageorges
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Jennifer Gallard
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Didier Lacombe
- Department of Genetics, Bordeaux, Pellegrin University Hospital, Bordeaux, France
| | - Sylvie Odent
- Department of Genetics, Rennes University Hospital, Rennes, France
| | - Myriam Mikaty
- Department of Genetics, Rennes University Hospital, Rennes, France
| | | | - Jamal Ghoumid
- Department of Genetics, Lille Jeanne de Flandre, University Hospital, Lille, France
| | - David Geneviève
- Department of Genetics, Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Natacha Lehman
- Department of Genetics, Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Nicole Philip
- Department of Genetics, la Timone University Hospital, Marseille, France
| | - Patrick Edery
- Department of Genetics, Femme-Mère-Enfant University Hospital, Lyon, France
| | - Delphine Héron
- Department of Genetics, APHP Pitié-Salpêtrière University Hospital, Paris, France
| | - Coralie Rastel
- Department of Genetics, APHP Pitié-Salpêtrière University Hospital, Paris, France
| | | | | | - Laurence Faivre
- Department of Genetics, Dijon University Hospital, Dijon, France
| | - Laurence Perrin
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP Nord-Université de Paris Robert Debré University Hospital and INSERM U1141 NeuroDiderot, Paris, France
| |
Collapse
|
6
|
Abstract
Smith-Magenis syndrome (SMS; OMIM #182290) is a complex genetic disorder characterized by distinctive physical features, developmental delay, cognitive impairment, and a typical behavioral phenotype. SMS is caused by interstitial 17p11.2 deletions, encompassing multiple genes and including the retinoic acid-induced 1 gene (RAI1), or by mutations in RAI1 itself. About 10% of all the SMS patients, in fact, carry an RAI1 mutation responsible for the phenotype. RAI1 (OMIM *607642) is a dosage-sensitive gene expressed in many tissues and highly conserved among species. Over the years, several studies have demonstrated that RAI1 (or its homologs in animal models) acts as a transcriptional factor implicated in embryonic neurodevelopment, neuronal differentiation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucose metabolisms, behavioral functions, and circadian activity. Patients with RAI1 pathogenic variants show some phenotypic differences when compared to those carrying the typical deletion. They usually have lower incidence of hypotonia and less cognitive impairment than those with 17p11.2 deletions but more frequently show the behavioral characteristics of the syndrome and overeating issues. These differences reflect the primary pathogenetic role of RAI1 without the pathogenetic contribution of the other genes included in the typical 17p11.2 deletion. The better comprehension of physiological roles of RAI1, its molecular co-workers and interactors, and its contribution in determining the typical SMS phenotype will certainly open a new path for therapeutic interventions.
Collapse
Affiliation(s)
- Mariateresa Falco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Sonia Amabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Fabio Acquaviva
- Department of Translational Medical Sciences (DISMET), Section of Pediatric Clinical Genetics, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Acquaviva F, Sana ME, Della Monica M, Pinelli M, Postorivo D, Fontana P, Falco MT, Nardone AM, Lonardo F, Iascone M, Scarano G. First evidence of Smith-Magenis syndrome in mother and daughter due to a novel RAI mutation. Am J Med Genet A 2016; 173:231-238. [PMID: 27683195 DOI: 10.1002/ajmg.a.37989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Smith-Magenis syndrome (SMS) is a complex genetic disorder caused by interstitial 17p11.2 deletions encompassing multiple genes, including the retinoic acid induced 1 gene-RAI1-or mutations in RAI1 itself. The clinical spectrum includes developmental delay, cognitive impairment, and behavioral abnormalities, with distinctive physical features that become more evident with age. No patients have been reported to have had offspring. We here describe a girl with developmental delay, mainly compromising the speech area, and her mother with mild intellectual disabilities and minor dysmorphic features. Both had sleep disturbance and attention deficit disorder, but no other atypical behaviors have been reported. In both, CGH-array analysis detected a 15q13.3 interstitial duplication, encompassing CHRNA7. However, the same duplication has been observed in several, apparently healthy, maternal relatives. We, thus, performed a whole exome sequencing analysis, which detected a frameshift mutation in RAI1, de novo in the mother, and transmitted to her daughter. No other family members carried this mutation. This is the first report of an SMS patient having offspring. Our experience confirms the importance of searching for alternative causative genetic mechanisms in case of confounding/inconclusive findings such as a CGH-array result of uncertain significance. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fabio Acquaviva
- U.O. di Genetica Medica, A.O.R.N. "G. Rummo", Benevento, Italy
| | - Maria Elena Sana
- U.S.S.D. Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Michele Pinelli
- Telethon Institute of Genetic Medicine (TIGEM), Pozzuoli, Napoli, Italy
| | - Diana Postorivo
- U.O.C. Laboratorio di Genetica Medica, Policlinico Tor Vergata, Roma, Italy
| | - Paolo Fontana
- Dipartimento di Medicine Molecolare e Biotecnologie Mediche, Università "Federico II", Napoli, Italy
| | - Maria Teresa Falco
- Dipartimento di Medicine Molecolare e Biotecnologie Mediche, Università "Federico II", Napoli, Italy
| | - Anna Maria Nardone
- U.O.C. Laboratorio di Genetica Medica, Policlinico Tor Vergata, Roma, Italy
| | | | - Maria Iascone
- U.S.S.D. Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | |
Collapse
|
8
|
Yuan B, Neira J, Gu S, Harel T, Liu P, Briceño I, Elsea SH, Gómez A, Potocki L, Lupski JR. Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy. Hum Genet 2016; 135:1161-74. [PMID: 27386852 DOI: 10.1007/s00439-016-1703-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith-Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Kovaleva NV, Cotter PD. Somatic/gonadal mosaicism for structural autosomal rearrangements: female predominance among carriers of gonadal mosaicism for unbalanced rearrangements. Mol Cytogenet 2016; 9:8. [PMID: 26823686 PMCID: PMC4730740 DOI: 10.1186/s13039-015-0211-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/21/2015] [Indexed: 01/23/2023] Open
Abstract
Background Mosaicism for chromosomal structural rearrangements (Rea) is rare and the timing and mechanisms of mosaic Rea formation, maintenance, and clinical manifestation are poorly understood. To date, there are no published data on the cytogenetic profile of mosaic Reas. The question as to whether the proportion of abnormal cells in the carrier’s cultured blood is clinically significant remains unanswered. A previous study showed a strong female preponderance among carriers of mosaicism for Rea with pericentromeric breaks, indicating female-specific instability in early embryos. However, there is no corresponding study on male to female sex ratio (SR) among carriers of somatic and/or gonadal mosaicism for non-centromeric Rea. Population rates of mosaic Rea carriers calculated from consecutive series of patients referred for various reasons and from prenatal samples have not been established. Therefore the objectives of the present study were several-fold: (1) a study on profiles of Rea involved, (2) comparative analysis of the proportion of cells with unbalanced Rea in blood cultures from asymptomatic and affected carriers, (3) comparative analysis of SR in carriers of mosaicism for balanced and unbalanced Rea, and (4) determination of the population frequency of mosaicism for autosomal Rea. Results One hundred and three cases of mosaicism for autosomal non-centromeric Rea (N/Rea; normal line/structural rearrangement) in which the sex of the carrier had been specified were identified in the literature. Among balanced Rea, there was a prevalence of reciprocal translocations (89 %) over inversions (11 %). Among unbalanced Rea, deletions were the most frequent (40 %), followed by duplications (25 %) and rings (16 %). Derivatives and other chromosome abnormalities were less frequent (9 and 10 %). Eight of eleven (73 %) affected carriers of unbalanced Rea displayed a high proportion (>50 %) of abnormal cells compared to 4/37 (11 %) in asymptomatic carriers, p < 0.0001. Among carriers of mosaicism for balanced Rea there was a slight male predominance, 24 M/22 F, unlike the strong female predominance among carriers of mosaicism for unbalanced Rea, 11 M/46 F, p < 0.0001. Among ten carriers of unbalanced Rea with reproductive failure, only one was a male with infertility, and one was a partner of a woman experiencing recurrent spontaneous abortion. Population rates of mosaics for reciprocal translocaton (N/rcp), inversion (N/inv), and unbalanced Rea (N/unbal Rea) calculated from published data on consecutive series of patients with reproductive failures were 0.02 ‰, 0.005 ‰, and 0.002 ‰, correspondingly. Among 30,376 infertile patients three carriers of mosaicism for balanced Rea were identified (two cases of N/rcp and one case of N/inv), whereas among 26,384 patients with habitual abortion seven carriers were detected (five N/rcp and two N/inv). Among all 56,760 tested patients with reproductive failures only one was found to be a carrier of mosaicism for an unbalanced Rea (N/del, mosaicism for deletion). Conclusions A high proportion of Rea cells (>50 %) detected in cultured T-lymphocytes is associated with clinical manifestation of chromosomal imbalance. A strong female prevalence among carriers of mosaicism for unbalanced Rea suggests male-specific selection against abnormal cells rather than impairment of male gametogenesis, as the latter suggests a better prognosis for male fetuses. These findings should be taken into consideration when genetic counseling of patients referred after a diagnosis of mosaicism for an unbalanced rearrangement in a fetus.
Collapse
Affiliation(s)
- Natalia V Kovaleva
- Department of Inherited Diseases, The Turner's Scientific and Research Orthopaedic Institute for Children, Parkovaya Str. 64-68, St. Petersburg, 196603 Russian Federation
| | - Philip D Cotter
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143 USA ; ResearchDx Inc., Irvine, CA 92618 USA
| |
Collapse
|
10
|
Neira-Fresneda J, Potocki L. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes. J Pediatr Genet 2015; 4:159-67. [PMID: 27617127 DOI: 10.1055/s-0035-1564443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid-inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome.
Collapse
Affiliation(s)
- Juanita Neira-Fresneda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
11
|
Hervé B, Roume J, Cognard S, Fauvert D, Molina-Gomes D, Vialard F. Low-level mosaicism of a de novo derivative chromosome 9 from a t(5;9)(q35.1;q34.3) has a major phenotypic impact. Eur J Med Genet 2015; 58:346-50. [DOI: 10.1016/j.ejmg.2015.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/26/2015] [Indexed: 02/01/2023]
|
12
|
Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet 2014; 15:215-244. [PMID: 24773319 DOI: 10.1146/annurev-genom-091212-153408] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra/CSIC, 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Centro Nacional de Análisis Genómico, 08023 Barcelona, Spain
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
13
|
Goh ESY, Banwell B, Stavropoulos DJ, Shago M, Yoon G. Mosaic microdeletion of 17p11.2-p12 and duplication of 17q22-q24 in a girl with Smith-Magenis phenotype and peripheral neuropathy. Am J Med Genet A 2013; 164A:748-52. [PMID: 24357149 DOI: 10.1002/ajmg.a.36322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Abstract
We report on a girl with a de novo mosaic derivative chromosome 17 involving a 7.4 Mb deletion of chromosome region 17p11.2 to 17p12 and a duplication of a 12.35 Mb region at 17q22 to 17q24. She was ascertained because of developmental delay, peripheral neuropathy, brachydactyly and minor anomalies. The derivative chromosome was present in approximately 12% of lymphocytes based on FISH studies, and was detected by array comparative genomic hybridization. To our knowledge, this is the third case of mosaicism involving deletion of the 17p11.2 region and the lowest level of mosaicism reported in a patient with Smith-Magenis syndrome (SMS).
Collapse
Affiliation(s)
- Elaine Suk-Ying Goh
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
14
|
Magoulas PL, Liu P, Gelowani V, Soler-Alfonso C, Kivuva EC, Lupski JR, Potocki L. Inherited dup(17)(p11.2p11.2): Expanding the phenotype of the Potocki-Lupski syndrome. Am J Med Genet A 2013; 164A:500-4. [DOI: 10.1002/ajmg.a.36287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/12/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Pilar L. Magoulas
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
- Texas Children's Hospital; Houston Texas
| | - Pengfei Liu
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Violet Gelowani
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Claudia Soler-Alfonso
- Division of Medical Genetics; Department of Pediatrics; University of Texas Health Science Center at Houston; Houston Texas
| | - Emma C. Kivuva
- Royal Devon and Exeter NHS Foundation Trust; Exeter United Kingdom
| | - James R. Lupski
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
- Department of Pediatrics; Baylor College of Medicine; Houston Texas
- Texas Children's Hospital; Houston Texas
| | - Lorraine Potocki
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
- Texas Children's Hospital; Houston Texas
| |
Collapse
|
15
|
Mosaic 15q13.3 deletion including CHRNA7 gene in monozygotic twins. Eur J Med Genet 2013; 56:274-7. [DOI: 10.1016/j.ejmg.2013.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022]
|
16
|
Smith–Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways. Expert Rev Mol Med 2011; 13:e14. [DOI: 10.1017/s1462399411001827] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smith–Magenis syndrome (SMS) is a complex neurobehavioural disorder characterised by intellectual disability, self-injurious behaviours, sleep disturbance, obesity, and craniofacial and skeletal anomalies. Diagnostic strategies are focused towards identification of a 17p11.2 microdeletion encompassing the gene RAI1 (retinoic acid induced 1) or a mutation of RAI1. Molecular evidence shows that most SMS features are due to RAI1 haploinsufficiency, whereas variability and severity are modified by other genes in the 17p11.2 region for 17p11.2 deletion cases. The functional role of RAI1 is not completely understood, but it is probably a transcription factor acting in several different biological pathways that are dysregulated in SMS. Functional studies based on the hypothesis that RAI1 acts through phenotype-specific pathways involving several downstream genes have shown that RAI1 gene dosage is crucial for normal regulation of circadian rhythm, lipid metabolism and neurotransmitter function. Here, we review the clinical and molecular features of SMS and explore more recent studies supporting possible therapeutic strategies for behavioural management.
Collapse
|
17
|
Willemsen MH, Beunders G, Callaghan M, de Leeuw N, Nillesen WM, Yntema HG, van Hagen JM, Nieuwint AWM, Morrison N, Keijzers-Vloet STM, Hoischen A, Brunner HG, Tolmie J, Kleefstra T. Familial Kleefstra syndrome due to maternal somatic mosaicism for interstitial 9q34.3 microdeletions. Clin Genet 2011; 80:31-8. [PMID: 21204793 DOI: 10.1111/j.1399-0004.2010.01607.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Kleefstra syndrome (Online Mendelian Inheritance in Man 607001) is caused by a submicroscopic 9q34.3 deletion or by intragenic euchromatin histone methyl transferase 1 (EHMT1) mutations. So far only de novo occurrence of mutations has been reported, whereas 9q34.3 deletions can be either de novo or caused by complex chromosomal rearrangements or translocations. Here we give the first descriptions of affected parent-to-child transmission of Kleefstra syndrome caused by small interstitial deletions, approximately 200 kb, involving part of the EHMT1 gene. Additional genome-wide array studies in the parents showed the presence of similar deletions in both mothers who only had mild learning difficulties and minor facial characteristics suggesting either variable clinical expression or somatic mosaicism for these deletions. Further studies showed only one of the maternal deletions resulted in significantly quantitative differences in signal intensity on the array between the mother and her child. But by investigating different tissues with additional fluorescent in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) analyses, we confirmed somatic mosaicism in both mothers. Careful clinical and cytogenetic assessments of parents of an affected proband with an (interstitial) 9q34.3 microdeletion are merited for accurate estimation of recurrence risk.
Collapse
Affiliation(s)
- M H Willemsen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands Department of Medical Genetics, Ferguson Smith Centre, Yorkhill Hospital, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kashork CD, Theisen A, Shaffer LG. Diagnosis of cryptic chromosomal syndromes by fluorescence in situ hybridization (FISH). CURRENT PROTOCOLS IN HUMAN GENETICS 2010; Chapter 8:Unit 8.10.1-20. [PMID: 20891031 DOI: 10.1002/0471142905.hg0810s67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This unit describes the various methods by which cytogeneticists detect chromosome abnormalities. The unit offers guidance for detecting such abnormalities with fluorescence in situ hybridization (FISH), as well as the benefits, limitations, and other applications of FISH.
Collapse
|
19
|
Petrin AL, Daack-Hirsch S, L'Heureux J, Murray JC. A case of 3q29 microdeletion syndrome involving oral cleft inherited from a nonaffected mosaic parent: molecular analysis and ethical implications. Cleft Palate Craniofac J 2010; 48:222-30. [PMID: 20500065 DOI: 10.1597/09-149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The objective of this study was to use array comparative genomic hybridization to detect causal microdeletions in samples of subjects with cleft lip and palate. SUBJECTS We analyzed DNA samples from a male patient and his parents seen during surgical screening for an Operation Smile medical mission in the Philippines. METHOD We used Affymetrix® Genome-Wide Human SNP Array 6.0 followed by sequencing and quantitative polymerase chain reaction using SYBR Green I dye. RESULTS We report the second case of 3q29 microdeletion syndrome including cleft lip with or without cleft palate and the first case of this microdeletion syndrome inherited from a phenotypically normal mosaic parent. CONCLUSIONS Our findings confirm the usefulness of a comparative genomic hybridization to detect causal microdeletions and indicate that parental somatic mosaicism should be considered in healthy parents for genetic counseling of the families. We discuss important ethical implications of sharing health impact results from research studies with the participant families.
Collapse
|
20
|
Abstract
There is growing appreciation that the human genome contains significant numbers of structural rearrangements, such as insertions, deletions, inversions, and large tandem repeats. Recent studies have defined approximately 5% of the human genome as structurally variant in the normal population, involving more than 800 independent genes. We present a detailed review of the various structural rearrangements identified to date in humans, with particular reference to their influence on human phenotypic variation. Our current knowledge of the extent of human structural variation shows that the human genome is a highly dynamic structure that shows significant large-scale variation from the currently published genome reference sequence.
Collapse
Affiliation(s)
- Andrew J Sharp
- Department of Genome Sciences, University of Washington, Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
21
|
Edelman EA, Girirajan S, Finucane B, Patel PI, Lupski JR, Smith ACM, Elsea SH. Gender, genotype, and phenotype differences in Smith-Magenis syndrome: a meta-analysis of 105 cases. Clin Genet 2007; 71:540-50. [PMID: 17539903 DOI: 10.1111/j.1399-0004.2007.00815.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smith-Magenis syndrome (SMS) is a multisystem disorder characterized by developmental delay and mental retardation, a distinctive behavioral phenotype, and sleep disturbance. We undertook a comprehensive meta-analysis to identify genotype-phenotype relationships to further understand the clinical variability and genetic factors involved in SMS. Clinical and molecular information on 105 patients with SMS was obtained through research protocols and a review of the literature and analyzed using Fisher's exact test with two-tailed p values. Several differences in these groups of patients were identified based on genotype and gender. Patients with RAI1 mutation were more likely to exhibit overeating, obesity, polyembolokoilamania, self-hugging, muscle cramping, and dry skin and less likely to have short stature, hearing loss, frequent ear infections, and heart defects when compared with patients with deletion, while a subset of small deletion cases with deletions spanning from TNFRSF13B to MFAP4 was less likely to exhibit brachycephaly, dental anomalies, iris abnormalities, head-banging, and hyperactivity. Significant differences between genders were also identified, with females more likely to have myopia, eating/appetite problems, cold hands and feet, and frustration with communication when compared with males. These results confirm previous findings and identify new genotype-phenotype associations including differences in the frequency of short stature, hearing loss, ear infections, obesity, overeating, heart defects, self-injury, self-hugging, dry skin, seizures, and hyperactivity among others based on genotype. Additional studies are required to further explore the relationships between genotype and phenotype and any potential discrepancies in health care and parental attitudes toward males and females with SMS.
Collapse
Affiliation(s)
- E A Edelman
- Department of Human Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Gropman AL, Elsea S, Duncan WC, Smith ACM. New developments in Smith-Magenis syndrome (del 17p11.2). Curr Opin Neurol 2007; 20:125-34. [PMID: 17351481 DOI: 10.1097/wco.0b013e3280895dba] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Recent clinical, neuroimaging, sleep, and molecular cytogenetic studies have provided new insights into the mechanisms leading to the Smith-Magenis phenotype and are summarized in this review. RECENT FINDINGS Cross sectional studies of patients with Smith-Magenis syndrome have found evidence for central and peripheral nervous system abnormalities, neurobehavioral disturbances, and an inverted pattern of melatonin secretion leading to circadian rhythm disturbance. A common chromosome 17p11.2 deletion interval spanning approximately 3.5 Mb is identified in about 70% of individuals with chromosome deletion. Recently heterozygous point mutations in the RAI1 gene within the Smith-Magenis syndrome critical region have been reported in Smith-Magenis syndrome patients without detectable deletion by fluorescent in-situ hybridization. Patients with intragenic mutations in RAI1 as well as those with deletions share most but not all aspects of the phenotype. SUMMARY Findings from molecular cytogenetic analysis suggest that other genes or genetic background may play a role in altering the functional availability of RAI1 for downstream effects. Further research into additional genes in the Smith-Magenis syndrome critical region will help define the role they play in modifying features or severity of the Smith-Magenis syndrome phenotype. More research is needed to translate advances in clinical research into new treatment options to address the sleep and neurobehavioral problems in this disorder.
Collapse
Affiliation(s)
- Andrea L Gropman
- Department of Neurology, Children's National Medical Center, George Washington University of the Health Sciences, Washington, DC 20010, USA.
| | | | | | | |
Collapse
|
23
|
Kosaki R, Okuyama T, Tanaka T, Migita O, Kosaki K. Monozygotic twins of Smith–Magenis syndrome. Am J Med Genet A 2007; 143A:768-9. [PMID: 17345621 DOI: 10.1002/ajmg.a.31647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rika Kosaki
- Department of Clinical Genetics and Molecular Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
24
|
Lachman RS. S. TAYBI AND LACHMAN'S RADIOLOGY OF SYNDROMES, METABOLIC DISORDERS AND SKELETAL DYSPLASIAS 2007. [PMCID: PMC7315357 DOI: 10.1016/b978-0-323-01931-6.50027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Gropman AL, Duncan WC, Smith ACM. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr Neurol 2006; 34:337-50. [PMID: 16647992 DOI: 10.1016/j.pediatrneurol.2005.08.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/30/2005] [Accepted: 08/11/2005] [Indexed: 11/30/2022]
Abstract
The Smith-Magenis syndrome is a rare, complex multisystemic disorder featuring, mental retardation and multiple congenital anomalies caused by a heterozygous interstitial deletion of chromosome 17p11.2. The phenotype of Smith-Magenis syndrome is characterized by a distinct pattern of features including infantile hypotonia, generalized complacency and lethargy in infancy, minor skeletal (brachycephaly, brachydactyly) and craniofacial features, ocular abnormalities, middle ear and laryngeal abnormalities including hoarse voice, as well as marked early expressive speech and language delays, psychomotor and growth retardation, and a 24-hour sleep disturbance. A striking neurobehavioral pattern of stereotypies, hyperactivity, polyembolokoilamania, onychotillomania, maladaptive and self-injurious and aggressive behavior is observed with increasing age. The diagnosis of Smith-Magenis syndrome is based upon the clinical recognition of a constellation of physical, developmental, and behavioral features in combination with a sleep disorder characterized by inverted circadian rhythm of melatonin secretion. Many of the features of Smith-Magenis syndrome are subtle in infancy and early childhood, and become more recognizable with advancing age. Infants are described as looking "cherubic" with a Down syndrome-like appearance, whereas with age the facial appearance is that of relative prognathism. Early diagnosis requires awareness of the often subtle clinical and neurobehavioral phenotype of the infant period. Speech delay with or without hearing loss is common. Most children are diagnosed in mid-childhood when the features of the disorder are most recognizable and striking. While improvements in cytogenetic analysis help to bring cases to clinical recognition at an earlier age, this review seeks to increase clinical awareness about Smith-Magenis syndrome by presenting the salient features observed at different ages including descriptions of the neurologic and behavioral features. Detailed review of the circadian rhythm disturbance unique to Smith-Magenis syndrome is presented. Suggestions for management of the behavioral and sleep difficulties are discussed in the context of the authors' personal experience in the setting of an ongoing Smith-Magenis syndrome natural history study.
Collapse
Affiliation(s)
- Andrea L Gropman
- Department of Pediatrics (Genetics and Metabolism), Georgetown University, Washington, DC 20007, USA.
| | | | | |
Collapse
|
26
|
A deletion of proximal 20p inherited from a normal mosaic carrier mother in a newborn with panhypopituitarism and craniofacial dysmorphism. Clin Dysmorphol 2005. [PMID: 15930903 DOI: 10.1097/00019605-200507000-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We describe a newborn male with a constitutional deletion of proximal chromosome 20p involving band p11.2. The phenotype included panhypopituitarism, craniofacial dysmorphism, a small phallus with a semi bifid scrotum, and bilateral widely separated first and second toes. The deletion was inherited from his mother, a mosaic carrier of the same deletion in peripheral lymphocytes. The only other similar case with a deletion of 20p11.22-p11.23 exhibited a phenotype that also included abnormal neural development (autism, craniofacial dysmorphism, and Hirschsprung disease). Our patient expands the spectrum of neurodevelopmental abnormalities associated with haploinsufficiency of band 20p11.2, and is the second deletion of 20p inherited from a normal mosaic carrier mother.
Collapse
|
27
|
Myers SM, Challman TD. Congenital heart defects associated with Smith-Magenis syndrome: Two cases of total anomalous pulmonary venous return. ACTA ACUST UNITED AC 2004; 131:99-100. [PMID: 15384100 DOI: 10.1002/ajmg.a.30290] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Bi W, Park SS, Shaw CJ, Withers MA, Patel PI, Lupski JR. Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am J Hum Genet 2003; 73:1302-15. [PMID: 14639526 PMCID: PMC1180396 DOI: 10.1086/379979] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/16/2003] [Indexed: 01/15/2023] Open
Abstract
Smith-Magenis syndrome (SMS) is caused by an approximately 4-Mb heterozygous interstitial deletion on chromosome 17p11.2 in approximately 80%-90% of affected patients. Three large ( approximately 200 kb), complex, and highly homologous ( approximately 98%) low-copy repeats (LCRs) are located inside or flanking the SMS common deletion. These repeats, also known as "SMS-REPs," are termed "distal," "middle," and "proximal." The directly oriented distal and proximal copies act as substrates for nonallelic homologous recombination resulting in both the deletion associated with SMS and the reciprocal duplication: dup(17)(p11.2p11.2). Using restriction enzyme cis-morphism analyses and direct sequencing, we mapped the regions of strand exchange in 16 somatic-cell hybrids that harbor only the recombinant SMS-REP. Our studies showed that the sites of crossovers were distributed throughout the region of homology between the distal and proximal SMS-REPs. However, despite approximately 170 kb of high homology, 50% of the recombinant junctions occurred in a 12.0-kb region within the KER gene clusters. DNA sequencing of this hotspot (positional preference for strand exchange) in seven recombinant SMS-REPs narrowed the crossovers to an approximately 8-kb interval. Four of them occurred in a 1,655-bp region rich in polymorphic nucleotides that could potentially reflect frequent gene conversion. For further evaluation of the strand exchange frequency in patients with SMS, novel junction fragments from the recombinant SMS-REPs were identified. As predicted by the reciprocal-recombination model, junction fragments were also identified from this hotspot region in patients with dup(17)(p11.2p11.2), documenting reciprocity of the positional preference for strand exchange. Several potential cis-acting recombination-promoting sequences were identified within the hotspot. It is interesting that we found 2.1-kb AT-rich inverted repeats flanking the proximal and middle KER gene clusters but not the distal one. The role of any or all of these in stimulating double-strand breaks around this positional recombination hotspot remains to be explored.
Collapse
Affiliation(s)
- Weimin Bi
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Sung-Sup Park
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Christine J. Shaw
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Pragna I. Patel
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
29
|
Park SS, Stankiewicz P, Bi W, Shaw C, Lehoczky J, Dewar K, Birren B, Lupski JR. Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs. Genome Res 2002; 12:729-38. [PMID: 11997339 PMCID: PMC186597 DOI: 10.1101/gr.82802] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An approximately 4-Mb genomic segment on chromosome 17p11.2, commonly deleted in patients with the Smith-Magenis syndrome (SMS) and duplicated in patients with dup(17)(p11.2p11.2) syndrome, is flanked by large, complex low-copy repeats (LCRs), termed proximal and distal SMS-REP. A third copy, the middle SMS-REP, is located between them. SMS-REPs are believed to mediate nonallelic homologous recombination, resulting in both SMS deletions and reciprocal duplications. To delineate the genomic structure and evolutionary origin of SMS-REPs, we constructed a bacterial artificial chromosome/P1 artificial chromosome contig spanning the entire SMS region, including the SMS-REPs, determined its genomic sequence, and used fluorescence in situ hybridization to study the evolution of SMS-REP in several primate species. Our analysis shows that both the proximal SMS-REP (approximately 256 kb) and the distal copy (approximately 176 kb) are located in the same orientation and derived from a progenitor copy, whereas the middle SMS-REP (approximately 241 kb) is inverted and appears to have been derived from the proximal copy. The SMS-REP LCRs are highly homologous (>98%) and contain at least 14 genes/pseudogenes each. SMS-REPs are not present in mice and were duplicated after the divergence of New World monkeys from pre-monkeys approximately 40-65 million years ago. Our findings potentially explain why the vast majority of SMS deletions and dup(17)(p11.2p11.2) occur at proximal and distal SMS-REPs and further support previous observations that higher-order genomic architecture involving LCRs arose recently during primate speciation and may predispose the human genome to both meiotic and mitotic rearrangements.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Base Composition/genetics
- Cell Line
- Cell Line, Transformed
- Chromosomes, Human, Pair 17/genetics
- Cloning, Molecular/methods
- Contig Mapping/methods
- DNA Fingerprinting/methods
- Evolution, Molecular
- Gene Dosage
- Gene Duplication
- Genome, Human
- Humans
- Intellectual Disability/genetics
- Multigene Family/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment/methods
- Sequence Analysis, DNA/methods
- Sequence Homology, Nucleic Acid
- Syndrome
Collapse
Affiliation(s)
- Sung-Sup Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Smith ACM, Gropman AL, Bailey-Wilson JE, Goker-Alpan O, Elsea SH, Blancato J, Lupski JR, Potocki L. Hypercholesterolemia in children with Smith-Magenis syndrome: del (17) (p11.2p11.2). Genet Med 2002; 4:118-25. [PMID: 12180145 DOI: 10.1097/00125817-200205000-00004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Smith-Magenis syndrome (SMS), a probable contiguous gene syndrome due to an interstitial deletion of chromosome 17 band p11.2, is associated with a distinct and complex phenotype, including physical, developmental, and neurobehavioral features. The majority of SMS patients are deleted for a common approximately 4 Mb interval that includes the gene SREBF1, a transmembrane transcription factor that regulates the low density lipoprotein (LDL) receptor and plays a crucial role in cholesterol homeostasis. A systematic study of fasting lipid profiles of patients with SMS was conducted to determine the frequency of cholesterol abnormalities. METHODS Fasting lipid profiles were examined in 49 children (27F/22M) between the ages of 0.6 years to 17.6 years (mean, 6.9 years) with a cytogenetically confirmed diagnosis of SMS. Observed values for serum total cholesterol (TC), triglycerides (TG), LDL cholesterol, and high density lipoprotein cholesterol were compared with published norms. The body mass index (BMI) was used as a measure of nutritional status. RESULTS Mean TC was significantly higher than published NHANES III pediatric norms (P < 0.0008). Overall 28 of 49 (57%) SMS subjects had lipid values greater than the 95th percentile for age and gender for at least one or more of the following: TC, TG, and/or LDL. Only 16 SMS subjects (32%) were within normal limits for all three of these variables. BMI values showed minimal positive correlation to SMS lipid values; however, no consistent effect was found. Thus BMI values alone do not explain the marked trend in increased TC, TG, and/or LDL observed in the SMS group. Based on the American Academy of Pediatrics recommended lipid levels for children and adolescents, only one third of SMS subjects fall within normal range for TC and LDL; an additional one third each measure "borderline" or "high" for these values. CONCLUSION Hypercholesterolemia is common in SMS and may serve as a useful early clinical biochemical marker of the syndrome.
Collapse
Affiliation(s)
- Ann C M Smith
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bldg. 10, Room 10C103, 10 Center Drive, MSC 1875, Bethesda, MD 20892-1875, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
An increasing number of human diseases are recognized to result from recurrent DNA rearrangements involving unstable genomic regions. These are termed genomic disorders, in which the clinical phenotype is a consequence of abnormal dosage of gene(s) located within the rearranged genomic fragments. Both inter- and intrachromosomal rearrangements are facilitated by the presence of region-specific low-copy repeats (LCRs) and result from nonallelic homologous recombination (NAHR) between paralogous genomic segments. LCRs usually span approximately 10-400 kb of genomic DNA, share >or= 97% sequence identity, and provide the substrates for homologous recombination, thus predisposing the region to rearrangements. Moreover, it has been suggested that higher order genomic architecture involving LCRs plays a significant role in karyotypic evolution accompanying primate speciation.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Dept Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3498, USA
| | | |
Collapse
|
32
|
Diagnosis of Microdeletion Syndromes by Fluorescence in situ Hybridization (
FISH
). ACTA ACUST UNITED AC 2001; Chapter 8:Unit 8.10. [DOI: 10.1002/0471142905.hg0810s14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Abstract
Cytogenetic imbalance in the newborn is a frequent cause of mental retardation and birth defects. Although aneuploidy accounts for the majority of imbalance, structural aberrations contribute to a significant fraction of recognized chromosomal anomalies. This review describes the major classes of constitutional, structural cytogenetic abnormalities and recent studies that explore the molecular mechanisms that bring about their de novo occurrence. Genomic features flanking the sites of recombination may result in susceptibility to chromosomal rearrangement. One such substrate for recombination is low-copy region-specific repeats. The identification of genome architectural features conferring susceptibility to rearrangements has been accomplished using methods that enable investigation of regions of the genome that are too small to be visualized by traditional cytogenetics and too large to be resolved by conventional gel electrophoresis. These investigations resulted in the identification of previously unrecognized structural cytogenetic anomalies, which are associated with genetic syndromes and allowed for the molecular basis of some chromosomal rearrangements to be delineated.
Collapse
Affiliation(s)
- L G Shaffer
- Department of Molecular and Human Genetics, Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
34
|
Engel U, Bohlander SK, Bink K, Hinney B, Laccone F, Bartels I. Pseudo dicentric chromosome (5;21): a rare example of maternal germline mosaicism. Hum Reprod 2001; 16:63-66. [PMID: 11139538 DOI: 10.1093/humrep/16.1.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Karyotyping of a malformed male newborn revealed the unbalanced karyotype of 46,XY, psudic(5;21)(q12;p13), +5 resulting in trisomy for the short arm of chromosome 5 and partial trisomy for 5q. Both parents had normal karyotypes in their peripheral blood lymphocytes. A second pregnancy ended in a miscarriage at 16 weeks gestation, sonographically 12 weeks. Karyotyping of chorionic villi from the abortus revealed the same unbalanced karyotype that had been identified in the first child. Fluorescence in-situ hybridization analysis confirmed a trisomy 5p. Microsatellite marker analysis ruled out illegitimacy and proved the maternal origin of the trisomic section of chromosome 5. Extended chromosome analysis of 60 metaphase cells from maternal skin fibroblasts and 40 metaphase cells from lymphocytes did not reveal mosaicism for psudic(5;21). These findings suggest the presence of a maternal germline mosaicism.
Collapse
Affiliation(s)
- U Engel
- Institute for Human Genetics, University of Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Babovic-Vuksanovic D, Jalal SM, Garrity JA, Robertson DM, Lindor NM. Visual impairment due to macular disciform scars in a 20-year-old man with Smith-Magenis syndrome: another ophthalmologic complication. AMERICAN JOURNAL OF MEDICAL GENETICS 1998; 80:373-6. [PMID: 9856566 DOI: 10.1002/(sici)1096-8628(19981204)80:4<373::aid-ajmg13>3.0.co;2-m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a 20-year-old man with Smith-Magenis syndrome and a 46,XY,del(17)(p11.2p11.2) karyotype. The interstitial deletion was confirmed by metaphase analysis using the fluorescent in situ hybridization probe (D17S29) for the Smith-Magenis region. The patient had hypertelorism, exotropia, and high myopia. Examination under anesthesia showed a lacquer crack near the right macula and a disciform scar of the left macula. Six months later, the patient presented with subacute visual loss. Examination demonstrated end-stage macula degeneration with bilateral disciform scars. There was no evidence of retinal detachment. Prior reports of Smith-Magenis syndrome mention telecanthus, ptosis, strabismus, iris anomalies, cataract, microcornea, optic nerve hypoplasia, myopia, retinal detachment, and lattice retinal degeneration. Bilateral macular degeneration has not been reported previously, and it may be an additional ophthalmologic manifestation of Smith-Magenis syndrome, either as a primary manifestation or as a direct consequence of high myopia.
Collapse
|
36
|
Hatchwell E, Long F, Wilde J, Crolla J, Temple K. Molecular confirmation of germ line mosaicism for a submicroscopic deletion of chromosome 22q11. AMERICAN JOURNAL OF MEDICAL GENETICS 1998; 78:103-6. [PMID: 9674897 DOI: 10.1002/(sici)1096-8628(19980630)78:2<103::aid-ajmg1>3.0.co;2-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Submicroscopic deletions of chromosome 22q11 have been reported in a multiple anomaly syndrome variously labelled as velocardiofacial syndrome, conotruncal anomaly face syndrome, and Di George syndrome. Most 22q11 microdeletions occur sporadically, although in some cases the deletion may be transmitted. We describe two affected sibs with confirmed 22q11 deletions from unaffected parents who are not deleted. Haplotype analysis demonstrates that the deletion in the affected sibs has occurred on the same maternal chromosome 22. Furthermore, an unaffected sib was found to have inherited the same maternal haplotype at 22q11 in an undeleted form. This is the first molecular demonstration of germ line mosaicism for a microdeletion at chromosome 22q11 and highlights the need for caution in estimation of recurrence risks, even when constitutional deletions have been excluded on parental analysis.
Collapse
Affiliation(s)
- E Hatchwell
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southhampton, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Zhao Q, Chen KS, Bejjani BA, Lupski JR. Cloning, genomic structure, and expression of mouse ring finger protein gene Znf179. Genomics 1998; 49:394-400. [PMID: 9615224 DOI: 10.1006/geno.1998.5285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ZNF179, a RING finger protein encoding gene, has been mapped within the critical deletion region for Smith-Magenis syndrome (SMS), a disorder characterized by mental retardation and multiple congenital anomalies associated with del(17)(p11.2). Here we report the cloning of Znf179, the mouse homologue of ZNF179, and characterization of its gene structure. The 3028-bp cDNA has a 1.9-kb open reading frame that contains a RING finger domain at its N-terminus and an alanine-rich and glycine-rich domain at its C-terminus. Znf179 genomic sequence includes 15 introns and spans about 10 kb on mouse chromosome 11, which maintains conserved synteny with human 17p. Northern analysis indicates that Znf179 is predominantly expressed in brain and testis. Although contained within the SMS common deletion interval, FISH experiments show that ZNF179 is not deleted in two SMS patients with smaller deletions.
Collapse
Affiliation(s)
- Q Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Smith-Magenis syndrome (SMS) is a distinct and clinically recognizable multiple congenital anomaly (MCA) and mental retardation syndrome caused by an interstitial deletion of chromosome 17 p11.2. The phenotype of SMS has been well described and includes: a characteristic pattern of physical features; a hoarse, deep voice; speech delay with or without associated hearing loss; signs of peripheral neuropathy; variable levels of mental retardation; and neurobehavioral problems. Although self-injury and sleep disturbance are major problems in SMS, studies are limited on the behavioral phenotype of SMS. This report reviews the current state of knowledge about SMS and presents new data based on syndrome-specific observations by the authors' longitudinal experience working with SMS, specifically related to the behavioral aspects of SMS. This information should have relevance for parents, clinicians, geneticists, and educators involved in the care of individuals with SMS.
Collapse
Affiliation(s)
- A C Smith
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1267, USA.
| | | | | |
Collapse
|
39
|
|
40
|
Elsea SH, Fritz E, Schoener-Scott R, Meyn MS, Patel PI. Gene for topoisomerase III maps within the Smith-Magenis syndrome critical region: Analysis of cell-cycle distribution and radiation sensitivity. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980106)75:1<104::aid-ajmg21>3.0.co;2-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
|
42
|
Chen KS, Manian P, Koeuth T, Potocki L, Zhao Q, Chinault AC, Lee CC, Lupski JR. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997; 17:154-63. [PMID: 9326934 DOI: 10.1038/ng1097-154] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smith-Magenis syndrome (SMS), caused by del(17)p11.2, represents one of the most frequently observed human microdeletion syndromes. We have identified three copies of a low-copy-number repeat (SMS-REPs) located within and flanking the SMS common deletion region and show that SMS-REP represents a repeated gene cluster. We have isolated a corresponding cDNA clone that identifies a novel junction fragment from 29 unrelated SMS patients and a different-sized junction fragment from a patient with dup(17)p11.2. Our results suggest that homologous recombination of a flanking repeat gene cluster is a mechanism for this common microdeletion syndrome.
Collapse
Affiliation(s)
- K S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Shapira SK, Orr-Urtreger A, Gagos S, Shaffer LG. Constitutional mosaicism for a chromosome 9 inversion resulting in recombinant aneusomy in an offspring. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1096-8628(19970414)69:4<360::aid-ajmg5>3.0.co;2-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Kimura T, Arakawa Y, Inoue S, Fukushima Y, Kondo I, Koyama K, Hosoi T, Orimo A, Muramatsu M, Nakamura Y, Abe T, Inazawa J. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1096-8628(19970331)69:3<320::aid-ajmg19>3.0.co;2-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Behjati F, Mullarkey M, Bergbaum A, Berry AC, Docherty Z. Chromosome deletion 17p11.2 (Smith-Magenis syndrome) in seven new patients, four of whom had been referred for fragile-X investigation. Clin Genet 1997; 51:71-4. [PMID: 9084941 DOI: 10.1111/j.1399-0004.1997.tb02420.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report seven new patients with clinical features of the Smith-Magenis syndrome (SMS) and small de novo interstitial deletions of 17p11.2. Four of these patients had been referred for fragile-X studies, but standard G-banded chromosome analysis routinely carried out in addition to the fragility tests revealed the microdeletion in chromosome 17. A relatively high proportion (approximately 2%) of patients referred to this Centre for fragile-X investigation are found to have a chromosome abnormality other than fra(X)(q27.3), half of them (approximately 1%) with an unbalanced chromosome complement. The four of our seven patients with deletion 17p11.2 constitute 25% of those with an unbalanced karyotype, and establish this microdeletion as the most common chromosome abnormality-except for fra(X)(q27.3)-in patients referred for fragile-X screening. The data indicate that standard karyotyping should be offered to patients with this referral indication, in addition to any molecular or chromosome fragility tests for fragile X. We also recommend that the short arm of chromosome 17 be examined critically in these patients. Moderate quality and resolution of banding (450-550 bands per haploid chromosome set) are adequate for detection of the 17p11.2 deletion.
Collapse
Affiliation(s)
- F Behjati
- S.E. Thames Regional Genetics Centre, Division of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
46
|
Grehl H, Rautenstrauss B, Liehr T, Bickel A, Ekici A, Bathke K, Neundörfer B. Clinical and morphological phenotype of HMSN 1A mosaicism. Neuromuscul Disord 1997; 7:27-31. [PMID: 9132137 DOI: 10.1016/s0960-8966(96)00396-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clinical, neurophysiological and morphological studies on a patient with mosaicism of the 17p11.2 duplication were performed in detail for the first time. Since duplication occurs during paternal meiosis, a somatic reversion is suggested, leading to mosaicism. The proportion of nuclei with duplication varied markedly between 49% in blood cells and 74% in tissue from the sural nerve. Clinically, mild symptoms of a motor and sensory neuropathy were present. However, neurophysiological changes and findings in the sural nerve biopsy were consistent with a typical hereditary motor and sensory neuropathy type 1 (HMSN 1). Differing clinical findings in patients with mosaicism of the 17p11.2 duplication may be explained by a varying degree and/or time of reversion.
Collapse
Affiliation(s)
- H Grehl
- Department of Neurology, University Hospital, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Juyal RC, Kuwano A, Kondo I, Zara F, Baldini A, Patel PI. Mosaicism for del(17)(p11.2p11.2) underlying the Smith-Magenis syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 66:193-6. [PMID: 8958329 DOI: 10.1002/(sici)1096-8628(19961211)66:2<193::aid-ajmg13>3.0.co;2-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome associated with deletion of band p11.2 of chromosome 17. The deletion is typically detected by high-resolution cytogenetic analysis of chromosomes from peripheral lymphocytes. Fluorescence in situ hybridization (FISH) has been previously used to rule out apparent mosaicism for del(17)(p11.2p11.2) indicated by routine cytogenetics. We now report mosaicism for del(17)(p11.2p11.2) in a child with SMS. The mosaicism had gone undetected during previous routine cytogenetic analysis. FISH analysis of peripheral lymphocytes as well as immortalized lymphoblasts using markers from 17p11.2 revealed that approximately 60% of cells carried the deletion. To our knowledge, this is the first case of SMS associated with mosaicism for del(17)(p11.2p11.2).
Collapse
Affiliation(s)
- R C Juyal
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
48
|
Greenberg F, Lewis RA, Potocki L, Glaze D, Parke J, Killian J, Murphy MA, Williamson D, Brown F, Dutton R, McCluggage C, Friedman E, Sulek M, Lupski JR. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 62:247-54. [PMID: 8882782 DOI: 10.1002/(sici)1096-8628(19960329)62:3<247::aid-ajmg9>3.0.co;2-q] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Smith-Magenis syndrome (SMS) is a multiple congenital anomaly, mental retardation (MCA/MR) syndrome associated with deletion of chromosome 17 band p11.2. As part of a multi-disciplinary clinical, cytogenetic, and molecular approach to SMS, detailed clinical studies including radiographic, neurologic, developmental, ophthalmologic, otolaryngologic, and audiologic evaluations were performed on 27 SMS patients. Significant findings include otolaryngologic abnormalities in 94%, eye abnormalities in 85%, sleep abnormalities (especially reduced REM sleep) in 75%, hearing impairment in 68% (approximately 65% conductive and 35% sensorineural), scoliosis in 65%, brain abnormalities (predominantly ventriculomegaly) in 52%, cardiac abnormalities in at least 37%, renal anomalies (especially duplication of the collecting system) in 35%, low thyroxine levels in 29%, low immunoglobulin levels in 23%, and forearm abnormalities in 16%. The measured IQ ranged between 20-78, most patients falling in the moderate range of mental retardation at 40-54, although several patients scored in the mild or borderline range. The frequency of these many abnormalities in SMS suggests that patients should be evaluated thoroughly for associated complications both at the time of diagnosis and at least annually thereafter.
Collapse
Affiliation(s)
- F Greenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tonk V, Schneider NR, Delgado MR, Mao J, Schultz RA. Identification and molecular confirmation of a small chromosome 10q duplication [dir dup(10)(q24.2-->q24.3)] inherited from a mother mosaic for the abnormality. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 61:16-20. [PMID: 8741911 DOI: 10.1002/(sici)1096-8628(19960102)61:1<16::aid-ajmg3>3.0.co;2-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We describe a family in which two siblings exhibited developmental delay, reduced muscle tone and mild muscle weakness. Cytogenetic evaluation demonstrated that both children had a tandem duplication of a small portion of the long arm of chromosome 10 [46,XX or XY,dir dup(10)(q24.2-->q24.3)], inherited from their clinically normal mother, who was found to be mosaic for the duplicated chromosome 10. Fluorescence in situ hybridization approaches, including total chromosome painting and the use of regional specific cosmid probes, were used to confirm the chromosome 10q origin of the duplicated material. This is the smallest confirmed duplication of this portion of chromosome 10 reported to date.
Collapse
Affiliation(s)
- V Tonk
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | |
Collapse
|
50
|
|