1
|
Ansar M, Paracha SA, Serretti A, Sarwar MT, Khan J, Ranza E, Falconnet E, Iwaszkiewicz J, Shah SF, Qaisar AA, Santoni FA, Zoete V, Megarbane A, Ahmed J, Colombo R, Makrythanasis P, Antonarakis SE. Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Hum Mol Genet 2020; 28:972-979. [PMID: 30481285 DOI: 10.1093/hmg/ddy406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs*25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149*)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jamshed Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, Kohat, Pakistan
| | | | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland.,Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, Epalinges, Switzerland
| | | | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University IRCCS Policlinico Gemelli, Rome, Italy.,Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Homozygous deletion of a gene-free region of 4p15 in a child with multiple anomalies: could biallelic loss of conserved, non-coding elements lead to a phenotype? Eur J Med Genet 2011; 55:63-6. [PMID: 22080113 DOI: 10.1016/j.ejmg.2011.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
We report a male patient, offspring of a consanguineous marriage between first cousins, with cognitive impairment, autistic-like behavior, deafness, postaxial polydactyly, and mild dysmorphic features. aCGH revealed a 600 kb homozygous deletion of 4p15.1 (from 33.553 to 34.159 Mb in NCBI36 hg18) encoding several transcripts of unknown function. Both parents are heterozygous for the deletion and the non-affected brother is homozygous for the normal alleles. We hypothesize that this deletion is likely to contribute to the phenotype of the patient. This case underlines the contribution of aCGH in discovering potentially pathogenic CNVs in consanguineous matings.
Collapse
|