1
|
Robberecht C, Voet T, Zamani Esteki M, Nowakowska BA, Vermeesch JR. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res 2012; 23:411-8. [PMID: 23212949 PMCID: PMC3589530 DOI: 10.1101/gr.145631.112] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large-scale analysis of balanced chromosomal translocation breakpoints has shown nonhomologous end joining and microhomology-mediated repair to be the main drivers of interchromosomal structural aberrations. Breakpoint sequences of de novo unbalanced translocations have not yet been investigated systematically. We analyzed 12 de novo unbalanced translocations and mapped the breakpoints in nine. Surprisingly, in contrast to balanced translocations, we identify nonallelic homologous recombination (NAHR) between (retro)transposable elements and especially long interspersed elements (LINEs) as the main mutational mechanism. This finding shows yet another involvement of (retro)transposons in genomic rearrangements and exposes a profoundly different mutational mechanism compared with balanced chromosomal translocations. Furthermore, we show the existence of compound maternal/paternal derivative chromosomes, reinforcing the hypothesis that human cleavage stage embryogenesis is a cradle of chromosomal rearrangements.
Collapse
Affiliation(s)
- Caroline Robberecht
- Laboratory for Molecular Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
2
|
Gunn SR, Robetorye RS, Mohammed MS. Comparative Genomic Hybridization Arrays in Clinical Pathology. Mol Diagn Ther 2012; 11:73-7. [PMID: 17397242 DOI: 10.1007/bf03256225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Array-based comparative genomic hybridization (array CGH) genome scanning is a powerful method for the global detection of gains and losses of genetic material in both congenital and neoplastic disorders. When used as a clinical diagnostic test, array CGH combines the whole genome perspective of traditional G-banded cytogenetics with the targeted identification of cryptic chromosomal abnormalities characteristic of fluorescence in situ hybridization (FISH). However, the presence of structural variants in the human genome can complicate analysis of patient samples, and array CGH does not provide morphologic information about chromosome structure, balanced translocations, or the actual chromosomal location of segmental duplications. Identification of such anomalies has significant diagnostic and prognostic implications for the patient. We therefore propose that array CGH should be used as a guide to the presence of genomic structural rearrangements in germline and tumor genomes that can then be further characterized by FISH or G-banding, depending on the clinical scenario. In this article, we share some of our experiences with diagnostic array CGH and discuss recent progress and challenges involved with the integration of array CGH into clinical laboratory medicine.
Collapse
Affiliation(s)
- Shelly R Gunn
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | |
Collapse
|
3
|
Clinical Application of Array-Based Comparative Genomic Hybridization for the Identification of Prognostically Important Genetic Alterations in Chronic Lymphocytic Leukemia. Mol Diagn Ther 2012; 12:271-80. [DOI: 10.1007/bf03256292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Hermetz KE, Surti U, Cody JD, Rudd MK. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol Cytogenet 2012; 5:6. [PMID: 22260357 PMCID: PMC3292815 DOI: 10.1186/1755-8166-5-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. RESULTS Array CGH resolved the breakpoints of the 6.97-Megabase (Mb) loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV) elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. CONCLUSIONS Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR) affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
5
|
Horbinski C, Carter EM, Heard PL, Sathanoori M, Hu J, Vockley J, Gunn S, Hale DE, Surti U, Cody JD. Molecular and clinical characterization of a recurrent cryptic unbalanced t(4q;18q) resulting in an 18q deletion and 4q duplication. Am J Med Genet A 2008; 146A:2898-904. [PMID: 18932219 DOI: 10.1002/ajmg.a.32557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recurrent constitutional non-Robertsonian translocations are very rare. We present the third instance of cryptic, unbalanced translocation between 4q and 18q. This individual had an apparently normal karyotype; however, after subtelomere fluorescence in situ hybridization (FISH), he was found to have a cryptic unbalanced translocation between 4q and 18q [ish der(18)t(4;18)(q35;q23)(4qtel+,18qtel-)]. Oligonucleotide array comparative genomic hybridization (aCGH) refined the breakpoints in this child and in the previously reported child and indicated that the breakpoints were within 20 kb of each other, suggesting that this translocation is, indeed, recurrent. A comparison of the clinical presentation of these individuals identified features that are characteristic of both 18q- and 4q+ as well as features that are not associated with either condition, such as a prominent metopic ridge, bitemporal narrowing, prominent, and thick eyebrows. Individuals with features suggestive of this 4q;18q translocation but a normal karyotype warrant aCGH or subtelomere studies.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gouas L, Goumy C, Véronèse L, Tchirkov A, Vago P. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities. ACTA ACUST UNITED AC 2008; 56:345-53. [DOI: 10.1016/j.patbio.2008.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
|
7
|
Emanuel BS, Saitta SC. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 2007; 8:869-83. [PMID: 17943194 DOI: 10.1038/nrg2136] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Submicroscopic chromosomal rearrangements that lead to copy-number changes have been shown to underlie distinctive and recognizable clinical phenotypes. The sensitivity to detect copy-number variation has escalated with the advent of array comparative genomic hybridization (CGH), including BAC and oligonucleotide-based platforms. Coupled with improved assemblies and annotation of genome sequence data, these technologies are facilitating the identification of new syndromes that are associated with submicroscopic genomic changes. Their characterization reveals the role of genome architecture in the aetiology of many clinical disorders. We review a group of genomic disorders that are mediated by segmental duplications, emphasizing the impact that high-throughput detection methods and the availability of the human genome sequence have had on their dissection and diagnosis.
Collapse
Affiliation(s)
- Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Abramson Research Center, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Philadelphia 19104-4318, USA.
| | | |
Collapse
|
8
|
Shaikh TH. Oligonucleotide arrays for high-resolution analysis of copy number alteration in mental retardation/multiple congenital anomalies. Genet Med 2007; 9:617-25. [PMID: 17873650 DOI: 10.1097/gim.0b013e318148bb81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Genetic diseases arising from microdeletions and microduplications lead to copy number alterations of genomic regions containing one or more genes. Clinically, these rearrangements may be detected by routine cytogenetic testing, which may include karyotype analysis, subtelomeric analysis with fluorescence in situ hybridization, and/or fluorescence in situ hybridization directed at known chromosomal rearrangement-based disorders. The major limitations of these tests are low resolution and limited coverage of the genome. Array-based comparative genomic hybridization has recently become a widely used approach in the genome-wide analysis of copy number alterations in children with mental retardation and/or multiple congenital anomalies. Oligonucleotide-based arrays provide a genome-wide coverage at a much higher resolution than microarrays currently used in clinical diagnostics, greatly improving the rate of detection of submicroscopic copy number alterations in children with mental retardation and/or multiple congenital anomalies.
Collapse
Affiliation(s)
- Tamim H Shaikh
- Division of Human Genetics, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Aradhya S, Cherry AM. Array-based comparative genomic hybridization: clinical contexts for targeted and whole-genome designs. Genet Med 2007; 9:553-9. [PMID: 17873642 DOI: 10.1097/gim.0b013e318149e354] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Array-based comparative genomic hybridization is ushering in a new standard for analyzing the genome, overcoming the limits of resolution associated with conventional G-banded karyotyping. The first genomic arrays were based on bacterial artificial chromosome clones mapped during the initial phases of the Human Genome Project. These arrays essentially represented multiple fluorescence in situ hybridization assays performed simultaneously. The first arrays featured a targeted design, consisting of hundreds of bacterial artificial chromosome clones limited mostly to genomic regions of known medical significance. Then came whole-genome arrays, which contained bacterial artificial chromosome clones from across the entire genome. More recently, alternative designs based on oligonucleotide probes have been developed, and all these are high-density whole-genome arrays with resolutions between 3 and 35 kb. Certain clinical circumstances are well suited for investigation by targeted arrays, and there are others in which high-resolution whole-genome arrays are necessary. Here we review the differences between the two types of arrays and the clinical contexts for which they are best suited. As array-based comparative genomic hybridization is integrated into diagnostic laboratories and different array designs are used in appropriate clinical contexts, this novel technology will invariably alter the testing paradigm in medical genetics and will lead to the discovery of novel genetic conditions caused by chromosomal anomalies.
Collapse
Affiliation(s)
- Swaroop Aradhya
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA.
| | | |
Collapse
|
10
|
Joosse SA, van Beers EH, Nederlof PM. Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material. BMC Cancer 2007; 7:43. [PMID: 17343727 PMCID: PMC1829401 DOI: 10.1186/1471-2407-7-43] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 03/07/2007] [Indexed: 01/10/2023] Open
Abstract
Background Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. Methods In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. Results Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. Conclusion This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility.
Collapse
Affiliation(s)
- Simon A Joosse
- Division of Experimental Therapy, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Erik H van Beers
- Division of Experimental Therapy, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra M Nederlof
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Dave BJ, Sanger WG. Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Semin Pediatr Neurol 2007; 14:2-6. [PMID: 17331878 DOI: 10.1016/j.spen.2006.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Five decades ago, Tijo and Levan (1956) first recognized the correct chromosome number in man to be 46. Shortly thereafter, several chromosome aneuploid syndromes were identified. In the early 1970s, various chromosomal-banding techniques were developed that allowed the recognition of individual chromosomes and deletions and duplications as etiologies for numerous chromosome syndromes. Slightly more than 10 years ago, fluorescence in situ hybridization (FISH) procedures, using fluorescent-labeled DNA sequences were developed and clinical use of this technique allowed for the identification of cryptic chromosome abnormalities associated with microdeletions and microduplications. The use of subtelomere region-specific FISH probes further led to the identification of deletions and other unbalanced rearrangements in individuals with mental retardation with an apparently normal karyotype. More recently, microarray comparative genomic hybridization was developed, and the technique has recently become incorporated into the clinical cytogenetics laboratory for the identification of submicrosopic deletions and duplications that are associated with developmental delay. The intent of this article is to review the cytogenetic and molecular cytogenetic techniques currently available for the diagnosis of individuals with neurologic disease and genetic imbalances that result in neurologic disturbances and to summarize the most efficient and appropriate use of these techniques in clinical practice.
Collapse
Affiliation(s)
- Bhavana J Dave
- Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha 68198-5440, USA.
| | | |
Collapse
|
12
|
Vaurs-Barriere C, Bonnet-Dupeyron MN, Combes P, Gauthier-Barichard F, Reveles XT, Schiffmann R, Bertini E, Rodriguez D, Vago P, Armour JAL, Saugier-Veber P, Frebourg T, Leach RJ, Boespflug-Tanguy O. Golli-MBP copy number analysis by FISH, QMPSF and MAPH in 195 patients with hypomyelinating leukodystrophies. Ann Hum Genet 2006; 70:66-77. [PMID: 16441258 DOI: 10.1111/j.1529-8817.2005.00208.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The inherited disorders of CNS myelin formation represent a heterogeneous group of leukodystrophies. The proteolipoprotein (PLP1) gene has been implicated in two X-linked forms, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2, and the gap junction protein alpha12 (GJA12) gene in a recessive form of PMD. The myelin basic protein (MBP) gene, which encodes the second most abundant CNS myelin protein after PLP1, presents rearrangements in hypomyelinating murine mutants and is always included in the minimal region deleted in 18q- patients with an abnormal hypomyelination pattern on cerebral MRI. In this study, we looked at the genomic copy number at the Golli-MBP locus in 195 patients with cerebral MRI suggesting a myelin defect, who do not have PLP1 mutation. Although preliminary results obtained by FISH suggested the duplication of Golli-MBP in 3 out of 10 patients, no abnormal gene quantification was found using Quantitative Multiplex PCR of Short Fluorescent fragments (QMPSF), Multiplex Amplifiable Probe Hybridization (MAPH), or another FISH protocol using directly-labelled probes. Pitfalls and interest in these different techniques to detect duplication events are emphasised. Finally, the study of this large cohort of patients suggests that Golli-MBP deletion or duplication is rarely involved in inherited defects of myelin formation.
Collapse
Affiliation(s)
- C Vaurs-Barriere
- INSERM U 384, Faculté de Médecine, Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tyson C, Harvard C, Locker R, Friedman JM, Langlois S, Lewis MES, Van Allen M, Somerville M, Arbour L, Clarke L, McGilivray B, Yong SL, Siegel-Bartel J, Rajcan-Separovic E. Submicroscopic deletions and duplications in individuals with intellectual disability detected by array-CGH. Am J Med Genet A 2006; 139:173-85. [PMID: 16283669 DOI: 10.1002/ajmg.a.31015] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intellectual disability (ID) affects about 3% of the population (IQ < 70), and in about 40% of moderate (IQ 35-49) to severe ID (IQ < 34), and 70% of cases of mild ID (IQ 50-70), the etiology of the disease remains unknown. It has long been suspected that chromosomal gains and losses undetectable by routine cytogenetic analysis (i.e., less than 5-10 Mb in size) are implicated in ID of unknown etiology. Array CGH has recently been used to perform a genome-wide screen for submicroscopic gains and losses in individuals with a normal karyotype but with features suggestive of a chromosome abnormality. In two recent studies, the technique has demonstrated a approximately 15% detection rate for de novo copy number changes of individual clones or groups of clones. Here, we describe a study of 22 individuals with mild to moderate ID and nonsyndromic pattern of dysmorphic features suspicious of an underlying chromosome abnormality, using the 3 Mb and 1 Mb commercial arrays (Spectral Genomics). Deletions and duplications of 16 clones, previously described to show copy number variability in normal individuals [Iafrate et al., 2004; Lapierre et al., 2004; Schoumans et al., 2004; Vermeesch et al., 2005] were seen in 21/22 subjects and were considered polymorphisms. In addition, three subjects showed submicroscopic deletions and duplications not previously reported as normal variants. Two of these submicroscopic changes were of de novo origin (microdeletions at 7q36.3 and a microduplication at 11q12.3-13.1) and one was of unknown origin as parental testing of origin could not be performed (microduplication of Xp22.3). The clinical description of the three subjects with submicroscopic chromosomal changes at 7q36.3, 11q12.3-13.1, Xp22.3 is provided.
Collapse
Affiliation(s)
- C Tyson
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hayashi S, Kurosawa K, Imoto I, Mizutani S, Inazawa J. Detection of cryptic chromosome aberrations in a patient with a balanced t(1;9)(p34.2;p24) by array-based comparative genomic hybridization. Am J Med Genet A 2006; 139:32-6. [PMID: 16222686 DOI: 10.1002/ajmg.a.30982] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mental retardation (MR) is one of the most common phenotypes in congenital disorders, but in many cases the pathogenesis remains unknown. Here, we report on a 5-year-old boy with mild developmental disability, cranial malformation, minor anomalies, and moderate MR. G-banded chromosome analysis revealed that he carried an apparent balanced translocation, t(1;9)(p34.2;p24). However, our array-based comparative genomic hybridization (CGH-array) analysis detected a cryptic genomic duplication and a deletion at the breakpoints. Further fluorescence in situ hybridization (FISH) showed that the duplication was approximately 7.9 Mb in size at 1p34.3-p33, and the deletion was 4 Mb at 9pter-p24. Although some features of the patient were consistent with those of monosomy 9p-syndrome, his features were not typical of cases of the syndrome, suggesting that the small deletion region involved in 9p may limit his phenotype. On the other hand, interstitial duplication at 1p34.3-p33 is very rare and his phenotype did not match with that in previous reports. CGH-array is a potentially useful technique for investigating cryptic copy-number alterations in cases of apparently balanced chromosome rearrangements in patients with unexpected clinical features.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Child, Preschool
- Chromosome Aberrations
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 9
- Gene Duplication
- Humans
- In Situ Hybridization, Fluorescence
- Intellectual Disability/genetics
- Male
- Nucleic Acid Hybridization/methods
- Oligonucleotide Array Sequence Analysis
- Translocation, Genetic
Collapse
Affiliation(s)
- Shin Hayashi
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
15
|
Linnankivi T, Tienari P, Somer M, Kähkönen M, Lönnqvist T, Valanne L, Pihko H. 18q deletions: Clinical, molecular, and brain MRI findings of 14 individuals. Am J Med Genet A 2006; 140:331-9. [PMID: 16419126 DOI: 10.1002/ajmg.a.31072] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied 14 individuals with partial deletions of the long arm of chromosome 18, including terminal and interstitial de novo and inherited deletions. Study participants were examined clinically and by brain MRI. The size of the deletion was determined by segregation analysis using microsatellite markers. We observed that the phenotype was highly variable, even in two families with three 1st degree relatives. Among the 14 individuals, general intelligence varied from normal to severe mental retardation. The more common features of 18q-deletions (e.g., foot deformities, aural atresia, palatal abnormalities, dysmyelination, and nystagmus) were present in individuals lacking only the distal portion 18q22.3-qtel. Interstitial deletions exerted very heterogeneous effects on phenotype. In individuals with distal 18q22.3-q23 deletions, brain MRI was very distinctive with poor differentiation of gray and white matter on T2-weighted images.
Collapse
Affiliation(s)
- Tarja Linnankivi
- Department of Pediatric Neurology, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Brisset S, Kasakyan S, L'Herminé AC, Mairovitz V, Gautier E, Aubry MC, Benkhalifa M, Tachdjian G. De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency. Prenat Diagn 2006; 26:206-13. [PMID: 16450348 DOI: 10.1002/pd.1379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Increased nuchal translucency (NT) during the first trimester of pregnancy is a useful marker to detect chromosomal abnormalities. Here, we report a prenatal case with molecular cytogenetic characterisation of an abnormal derivative chromosome 9 identified through NT. METHODS Amniocentesis was performed because of an increased NT (4.4 mm) and showed an abnormal de novo 46,XX,add(9)(p24.3) karyotype. To characterise the origin of the small additional material on 9p, we performed a microarray comparative genomic hybridisation (microarray CGH) using a genomic DNA array providing an average of 1 Mb resolution. RESULTS Microarray CGH showed a deletion of distal 9p and a trisomy of distal 17q. These results were confirmed by FISH analyses. Microarray CGH provided accurate information on the breakpoint regions and the size of both distal 9p deletion and distal 17q trisomy. The fetus was therefore a carrier of a de novo derivative chromosome 9 arising from a t(9;17)(p24.3;q24.3) translocation and generating a monosomy 9p24.3-pter and a trisomy 17q24.3-qter. CONCLUSION This case illustrates that microarray CGH is a rapid, powerful and sensitive technology to identify small de novo unbalanced chromosomal abnormalities and can be applied in prenatal diagnosis.
Collapse
Affiliation(s)
- Sophie Brisset
- Service de Génétique et Reproduction (APHP), Hôpital Antoine Béclère, Clamart, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pramparo T, Mattina T, Gimelli S, Liehr T, Zuffardi O. Narrowing the deleted region associated with the 15q21 syndrome. Eur J Med Genet 2005; 48:346-52. [PMID: 16179230 DOI: 10.1016/j.ejmg.2005.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Interstitial deletions of chromosome 15q, not involving the PWS/AS region, are uncommon and poorly characterized. Few cases defined at the cytogenetic level have been reported with 15q21 deletions and characteristic facial dysmorphisms are present in all them. We report on the molecular characterization by array-CGH of a new patient with a 15q21 deletion and on the redefinition of a second patient previously studied with multicolor banding. The two deletions resulted to be similar and involve about 12 and 8 Mb, respectively. Our study might promote to delineate a better genotype-phenotype correlation associated with 15q21 deletions.
Collapse
Affiliation(s)
- Tiziano Pramparo
- Biologia Generale e Genetica Medica, Università di Pavia, Via Forlanini, 14-27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
18
|
Morleo M, Pramparo T, Perone L, Gregato G, Le Caignec C, Mueller RF, Ogata T, Raas-Rothschild A, de Blois MC, Wilson LC, Zaidman G, Zuffardi O, Ballabio A, Franco B. Microphthalmia with linear skin defects (MLS) syndrome: Clinical, cytogenetic, and molecular characterization of 11 cases. Am J Med Genet A 2005; 137:190-8. [PMID: 16059943 DOI: 10.1002/ajmg.a.30864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microphthalmia with linear skin defects (MLS) syndrome (MIM 309801) is a severe and rare developmental disorder, which is inherited as an X-linked dominant trait with male lethality. In the vast majority of patients, this syndrome is associated with terminal deletion of the Xp22.3 region. Thirty-five cases have been described to date in the literature since the first description of the syndrome in the early 1990s. We now report on the clinical, cytogenetic, and molecular characterization of 11 patients, 7 of whom have not been described previously. Seven of these patients have chromosomal abnormalities of the short arm of the X-chromosome, which were characterized and defined by fluorescence in situ hybridization (FISH) analysis. Intriguingly, one of the patients displays an interstitial Xp22.3 deletion, which to the best of our knowledge is the first reported for this condition. Finally we report on the identification and molecular characterization of four cases with clinical features of MLS but apparently normal karyotypes, verified by FISH analysis using genomic clones spanning the MLS minimal critical region, and with genome-wide analysis using a 1 Mb resolution BAC microarray. These patients made it possible to undertake mutation screening of candidate genes and may prove critical for the identification of the gene responsible for this challenging and intriguing genetic disease.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hwang KS, Pearson MA, Stankiewicz P, Lennon PA, Cooper ML, Wu J, Ou Z, Cai WW, Patel A, Cheung SW. Cryptic unbalanced translocation t(17;18)(p13.2;q22.3) identified by subtelomeric FISH and defined by array-based comparative genomic hybridization in a patient with mental retardation and dysmorphic features. Am J Med Genet A 2005; 137:88-93. [PMID: 16015583 DOI: 10.1002/ajmg.a.30858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecular cytogenetics allows the identification of cryptic chromosome rearrangements, which is clinically useful in mentally retarded and/or dysmorphic individuals with normal results from conventional cytogenetics analysis. We report on a 3-year-old girl with mental retardation, growth deficiency, speech delay, and dysmorphic features including hypertelorism, upslanting palpebral fissures, midfacial hypoplasia, and posteriorly rotated ears. The G-banding analysis showed a 46,XX,t(3;8)(q26.2;p21.1)mat karyotype. However, her clinical features were suggestive of the 18q syndrome. Subtelomeric FISH analysis revealed a der(18) translocated material from chromosome 17. Array-based comparative genomic hybridization (array-CGH) with subtelomeric BAC and PAC clones confirmed the abnormality and refined the breakpoints to 18q22.3-qter and 17p13.2-pter (deletion of 8.5 Mb and duplication of 3.9 Mb, respectively). This case demonstrates the diagnostic utility of combining conventional cytogenetics with molecular chromosome analyses for the identification of subtle chromosome abnormalities.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Child, Preschool
- Chromosome Banding
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 18/genetics
- Face/abnormalities
- Female
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence/methods
- Intellectual Disability/pathology
- Karyotyping
- Nucleic Acid Hybridization/methods
- Syndrome
- Telomere/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Kwei Shuai Hwang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wong A, Lese Martin C, Heretis K, Ruffalo T, Wilber K, King W, Ledbetter DH. Detection and calibration of microdeletions and microduplications by array-based comparative genomic hybridization and its applicability to clinical genetic testing. Genet Med 2005; 7:264-71. [PMID: 15834244 DOI: 10.1097/01.gim.0000160076.14102.ec] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
PURPOSE Genome-wide telomere screening by fluorescence in situ hybridization (FISH) has revealed that approximately 6% of unexplained mental retardation is due to submicroscopic telomere imbalances. However, the use of FISH for telomere screening is labor intensive and time consuming, given that 41 telomeres are interrogated. We have evaluated the use of array-based Comparative Genomic Hybridization (aCGH) as a more efficient tool for identifying telomere rearrangements. METHODS In this study, 102 individuals with unexplained mental retardation, with either normal or abnormal FISH results, were selected for a blinded retrospective study using aCGH. Results between the two methodologies were compared to ascertain the ability of aCGH to be used in a clinical diagnostics setting. RESULTS We detected 100% of all imbalances previously identified by FISH (n = 17) and identified two additional abnormalities, a 10q telomere duplication and an interstitial duplication of 22q11. Interphase FISH analysis verified all abnormal array results. We also demonstrated that aCGH can accurately calibrate the size of telomere imbalances by using an array with "molecular rulers" for the telomeric regions of 1p, 16p, 17p, and 22q. CONCLUSION This study demonstrates that aCGH is an equivalent methodology to telomere FISH for detecting submicroscopic deletions. In addition, small duplications that are not easily visible by FISH can be accurately detected using aCGH. Because aCGH allows simultaneous interrogation of hundreds to thousands of DNA probes and is more amenable to automation, it offers an efficient and high-throughput alternative for detecting and calibrating unbalanced rearrangements, both of the telomere region, as well as other genomic locations.
Collapse
Affiliation(s)
- Andrew Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Arrington CB, Cowley BC, Nightingale DR, Zhou H, Brothman AR, Viskochil DH. Interstitial deletion 8q11.2-q13 with congenital anomalies of CHARGE association. Am J Med Genet A 2005; 133A:326-30. [PMID: 15672384 DOI: 10.1002/ajmg.a.30562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specific genetic loci responsible for CHARGE association are currently unknown. Herein, we describe a neonate with clinical manifestations consistent with CHARGE association who has a de novo interstitial deletion involving bands 8q11.2 to 8q13. Genetic mapping and genomic microarray technology have been used to more accurately define the breakpoints of this deletion. Within the deleted region, there are approximately 150 expressed genes, one or more of which may contribute to the manifestations of CHARGE association.
Collapse
Affiliation(s)
- Cammon B Arrington
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Jannine D Cody
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas, USA
| | | |
Collapse
|
23
|
Moncla A, Missirian C, Philip N, Marlin S. Another patient with cryptic unbalanced translocation between chromosomes 4q and 18q: evidence by microarray CGH. Am J Med Genet A 2005; 131:314-7. [PMID: 15389711 DOI: 10.1002/ajmg.a.30262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Ozand PT, Odaib AA, Sakati N, Al-Hellani AM. Recently available techniques applicable to genetic problems in the Middle East. COMMUNITY GENETICS 2005; 8:44-7. [PMID: 15767755 DOI: 10.1159/000083338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this paper, we address the preventive health aspects of genetic problems in the Middle East and provide guidelines to prioritize preventive strategies. Applications of various novel genetic techniques such as comprehensive neonatal screening, high throughput heterozygote detection, preimplantation genetic diagnosis, Affymetrix systems, the NanoChip system and a new way of sensitive karyotyping for single-cell chromosome abnormalities are discussed. In conclusion, from the various genetic techniques available, each country should adopt strategies most suitable to its genetic needs and should prioritize the programs to be used in prevention.
Collapse
Affiliation(s)
- Pinar T Ozand
- Department of Genetics, King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | |
Collapse
|
25
|
Harvard C, Malenfant P, Koochek M, Creighton S, Mickelson ECR, Holden JJA, Lewis MES, Rajcan-Separovic E. A variant Cri du Chat phenotype and autism spectrum disorder in a subject with de novo cryptic microdeletions involving 5p15.2 and 3p24.3-25 detected using whole genomic array CGH. Clin Genet 2005; 67:341-51. [PMID: 15733271 DOI: 10.1111/j.1399-0004.2005.00406.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cri du Chat syndrome (CdCs) is a well-defined clinical entity, with an incidence of 1/15,000 to 1/50,000. The critical region for CdCs has been mapped to 5p15, with the hallmark cat-like cry sublocalized to 5p15.3 and the remaining clinical features to 5p15.2. We report findings in a subject with a de novo t(5;7)(p15.2;p12.2) and an inv(3)(p24q24), who was found to have a cryptic microdeletion in the critical region for CdCs detected using a 1-Mb genomic microarray. In addition to 5p deletion, the proband had a de novo single clone loss at the 3p breakpoint of inv(3)(p24q24) and a familial single clone deletion at 18q12. Deletions were confirmed using microsatellite analysis and fluorescence in situ hybridization. The 5p deletion encompasses approximately 3 Mb, mapping to the border between bands 5p15.2 and 5p15.31. The single clone deletion on chromosome 3 maps to 3p24.3-3p25, for which there is no known phenotype. The clinical features of our proband differ from the characteristic CdC phenotype, which may reflect the combined effect of the two de novo microdeletions and/or may further refine the critical region for CdCs. Typical features of CdCs that are present in the proband include moderate intellectual disability, speech, and motor delay as well as dysmorphic features (e.g. broad and high nasal root, hypertelorism, and coarse facies). Expected CdCs features that are not present are growth delay, microcephaly, round facies, micrognathia, epicanthal folds, and the signature high-pitched cry. Behavioral traits in this subject included autism spectrum disorder, attention-deficit hyperactivity disorder, and unmanageable behavior including aggression, tantrums, irritability, and self-destructive behavior. Several of these behaviors have been previously reported in patients with 5p deletion syndrome. Although most agree on the cat-cry critical region (5p15.3), there is discrepancy in the precise location and size of the region associated with the more severe manifestations of CdCs. The clinical description of this proband and the characterization of his 5p deletion may help to further refine the phenotype-genotype associations in CdCs and autism spectrum disorder.
Collapse
Affiliation(s)
- C Harvard
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Peng HH, Wang TH, Chao AS, Chang YL, Chang SD, Soong YK. Prenatal diagnosis of monosomy 4p14→pter and trisomy 11q25→qter: clinical presentations and outcomes. Prenat Diagn 2005; 25:1133-7. [PMID: 16231301 DOI: 10.1002/pd.1287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present the case of a pregnant woman with low free beta-HCG in maternal serum Down syndrome screening that led to prenatal diagnosis of a fetus with 46,XY,der(4)t(4;11)(p14; q25). This chromosomal aneuploidy resulted from unbalanced segregation of a paternal balanced translocation, t(4;11)(p14;q25). Prenatal ultrasound revealed intrauterine growth restriction, cleft lip and palate, a thick nuchal fold, a single umbilical artery, and pyelectasis. Array-based comparative genomic hybridization and short tandem repeat markers further located the exact breakpoint of translocation. The woman had her pregnancy terminated at 23 weeks of gestational age. The proband had general appearance of Wolf-Hirschhorn syndrome and some unique findings, including single umbilical artery, severe immunoglobulin deficiency, scalp defect, and underlying bony defect. Our case underscores the importance of fetal karyotyping when low maternal serum free beta-HCG is found. It also adds information on the fetal presentations of monosomy 4p14-->pter and trisomy 11q25-->qter.
Collapse
Affiliation(s)
- Hsiu-Huei Peng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-ko Medical Center, Kwei-Shan, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Wassink TH, Brzustowicz LM, Bartlett CW, Szatmari P. The search for autism disease genes. ACTA ACUST UNITED AC 2005; 10:272-83. [PMID: 15666342 DOI: 10.1002/mrdd.20041] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism is a heritable disorder characterized by phenotypic and genetic complexity. This review begins by surveying current linkage, gene association, and cytogenetic studies performed with the goal of identifying autism disease susceptibility variants. Though numerous linkages and associations have been identified, they tend to diminish upon closer examination or attempted replication. The review therefore explores challenges to current methodologies presented by the complexities of autism that might underlie some of the current difficulties, and finishes by describing emerging phenotypic, statistical, and molecular investigational approaches that offer hope of overcoming those challenges.
Collapse
Affiliation(s)
- Thomas H Wassink
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
28
|
Mao R, Pevsner J. The use of genomic microarrays to study chromosomal abnormalities in mental retardation. ACTA ACUST UNITED AC 2005; 11:279-85. [PMID: 16240409 DOI: 10.1002/mrdd.20082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mental retardation affects 2 to 3% of the US population. It is defined by broad criteria, including significantly subaverage intelligence, onset by age 18, and impaired function in a group of adaptive skills. A myriad of genetic and environmental causes have been described, but for approximately half of individuals diagnosed with mental retardation the molecular basis remains unknown. Genomic microarrays, also called array comparative genomic hybridization (array CGH), represent one of several novel technologies that allow the detection of chromosomal abnormalities, such as microdeletions and microduplications, in a rapid, high throughput fashion from genomic DNA samples. In one early application of this technology, genomic microarrays have been used to characterize the extent of chromosomal changes in a group of patients diagnosed with one particular type of disorder that causes mental retardation, such as deletion 1p36 syndrome. In another application, DNA samples from individuals with idiopathic mental retardation have been assayed to scan the entire genome in attempts to identify chromosomal changes. Genomic microarrays offer both a genome-wide perspective of chromosomal aberrations as well as higher resolution (to the level of approximately one megabase) compared to alternative available technologies.
Collapse
Affiliation(s)
- Rong Mao
- Program in Biochemistry, Molecular, and Cellular Biology, Johns Hopkins School of Medicine, and Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
Stevenson DA, Carey JC, Cowley BC, Bayrak-Toydemir P, Mao R, Brothman AR. 4p terminal deletion and 11p subtelomeric duplication detected by genomic microarray in a patient with Wolf-Hirschhorn syndrome and an atypical phenotype. J Pediatr 2004; 145:840-2. [PMID: 15580214 DOI: 10.1016/j.jpeds.2004.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report a de novo cryptic 11p duplication found by genomic microarray with a cytogenetically detected 4p deletion. Terminal 4p deletions cause Wolf-Hirschhorn syndrome, but the phenotype probably was modified by the paternally derived 11p duplication. This emphasizes the clinical utility of genomic microarray.
Collapse
Affiliation(s)
- David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Keegan CE, Vilain E, Mohammed M, Lehoczky J, Dobyns WB, Archer SM, Innis JW. Microcephaly, jejunal atresia, aberrant right bronchus, ocular anomalies, and XY sex reversal. Am J Med Genet A 2004; 125A:293-8. [PMID: 14994240 DOI: 10.1002/ajmg.a.20455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a patient with microcephaly, jejunal atresia, aberrant right tracheobronchial tree, mild left blepharoptosis, and corectopia (irregular pupil), left sectoral iris stromal hypoplasia and peripheral anterior synechia, and 46,XY sex reversal. Testosterone and dihydrotestosterone (DHT) levels were within normal limits for a male infant at 3 weeks of age. Gonadectomy at age 18 months revealed immature testis tissue and no evidence of Müllerian structures. PCR amplification of the androgen receptor (AR) gene and flanking genomic regions revealed no evidence for deletion. Array-comparative genomic hybridization (array-CGH) for assessment of gene dosage in other regions of the genome was normal. This patient represents a multiple anomaly disorder similar to intestinal atresia-ocular anomalies-microcephaly syndrome (MIM#243605) but incorporating 46,XY sex reversal with testicular tissue, demonstrating a defect in the sexual differentiation pathway.
Collapse
Affiliation(s)
- Catherine E Keegan
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese Martin C. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 2004; 74:1168-74. [PMID: 15127362 PMCID: PMC1182080 DOI: 10.1086/421250] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 03/15/2004] [Indexed: 11/04/2022] Open
Abstract
Miscarriage is a condition that affects 10%-15% of all clinically recognized pregnancies, most of which occur in the first trimester. Approximately 50% of first-trimester miscarriages result from fetal chromosome abnormalities. Currently, G-banded chromosome analysis is used to determine if large-scale genetic imbalances are the cause of these pregnancy losses. This technique relies on the culture of cells derived from the fetus, a technique that has many limitations, including a high rate of culture failure, maternal overgrowth of fetal cells, and poor chromosome morphology. Comparative genomic hybridization (CGH)-array analysis is a powerful new molecular cytogenetic technique that allows genomewide analysis of DNA copy number. By hybridizing patient DNA and normal reference DNA to arrays of genomic clones, unbalanced gains or losses of genetic material across the genome can be detected. In this study, 41 product-of-conception (POC) samples, which were previously analyzed by G-banding, were tested using CGH arrays to determine not only if the array could identify all reported abnormalities, but also whether any previously undetected genomic imbalances would be discovered. The array methodology detected all abnormalities as reported by G-banding analysis and revealed new abnormalities in 4/41 (9.8%) cases. Of those, one trisomy 21 POC was also mosaic for trisomy 20, one had a duplication of the 10q telomere region, one had an interstitial deletion of chromosome 9p, and the fourth had an interstitial duplication of the Prader-Willi/Angelman syndrome region on chromosome 15q, which, if maternally inherited, has been implicated in autism. This retrospective study demonstrates that the DNA-based CGH-array technology overcomes many of the limitations of routine cytogenetic analysis of POC samples while enhancing the detection of fetal chromosome aberrations.
Collapse
|
32
|
Tyson C, McGillivray B, Chijiwa C, Rajcan-Separovic E. Elucidation of a cryptic interstitial 7q31.3 deletion in a patient with a language disorder and mild mental retardation by array-CGH. ACTA ACUST UNITED AC 2004; 129A:254-60. [PMID: 15326624 DOI: 10.1002/ajmg.a.30245] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on a 14-year-old boy who presented with bilateral cleft lip and palate, hearing loss, a language processing disorder, and mild mental retardation (MR). G-banded chromosome analysis of the patient and his family revealed he carried an apparently balanced de novo complex translocation involving chromosomes 5, 6, and 7. Chromosomal comparative genomic hybridization (CGH) was performed to investigate the possibility of any genomic imbalance as a result of the complex rearrangement. No abnormality was detected at any of the translocation breakpoint regions (5p13.2, 6p24, 7q21.1, and 7q21.3), nor was there any other imbalance which fell inside our significance level of 0.8-1.2. Array-CGH analysis was initiated to perform a higher resolution search for gains and losses, and revealed a deletion of two adjacent clones, CTB-133K23 and RP11-112P4, mapping to 7q31.3, which are 4.4 Mb apart. Fluorescence in situ hybridization (FISH) using these two clones confirmed the deletion. 7q31 has frequently been implicated in the search for genes involved in speech and language disorders. The specific 7q31.3 region deleted in our patient has significant overlap with some such areas of the genome. These findings are, therefore, of value in identifying genes involved in the speech and language phenotypes. This study has shown the importance of array-CGH in investigating patients who have clinical features suggestive of a chromosome abnormality, but with apparently balanced chromosome rearrangements. It has demonstrated that the array-CGH technique provides a much greater insight into submicroscopic chromosome imbalances than conventional cytogenetic techniques.
Collapse
Affiliation(s)
- Christine Tyson
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
33
|
Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 2003; 12 Spec No 2:R145-52. [PMID: 12915456 DOI: 10.1093/hmg/ddg261] [Citation(s) in RCA: 281] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alterations in the genome that lead to changes in DNA sequence copy number are a characteristic of solid tumors and are found in association with developmental abnormalities and/or mental retardation. Comparative genomic hybridization (CGH) can be used to detect and map these changes. Recent improvements in the resolution and sensitivity of CGH have been possible through implementation of microarray-based CGH (array CGH). Here we discuss the performance characteristics of different array platforms and review some of the recent applications of array CGH in cancer and medical genetics.
Collapse
Affiliation(s)
- Donna G Albertson
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143-0808,USA.
| | | |
Collapse
|