1
|
Randol JL, Kim K, Ponzini MD, Tassone F, Falcon AK, Hagerman RJ, Hagerman PJ. Variation of FMRP Expression in Peripheral Blood Mononuclear Cells from Individuals with Fragile X Syndrome. Genes (Basel) 2024; 15:356. [PMID: 38540415 PMCID: PMC10969917 DOI: 10.3390/genes15030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.
Collapse
Affiliation(s)
- Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Matthew D. Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Alexandria K. Falcon
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Segal O, Kowal T, Banet-Levi Y, Gabis LV. Executive Function and Working Memory Deficits in Females with Fragile X Premutation. Life (Basel) 2023; 13:life13030813. [PMID: 36983968 PMCID: PMC10053193 DOI: 10.3390/life13030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The Fragile X premutation is a genetic instability of the FMR1 gene caused by 55–199 recurrences of the CGG sequence, whereas there are only 7–54 repeats of the CGG sequence in the normal condition. While males with the premutation of Fragile X were found to have difficulties in executive functions and working memory, little data have been collected on females. This study is among the first to address executive functions and phonological memory in females with the Fragile X premutation. Twenty-three female carriers aged 20–55 years and twelve non carrier females matched in age and levels of education (in years) participated in this study. Executive functions and phonological memory were assessed using the self-report questionnaire The Behavior Rating Inventory of Executive Function (BRIEF) and behavioral measures (nonword repetitions, forward and backward digit span). Females who were carriers of the premutation of the FMR1 gene reported less efficient executive functions in the BRIEF questionnaire compared to the control group. In addition, a relationship was found between the number of repetitions on the CGG sequence of nucleotides, nonword repetitions, and forward digit span. The findings suggest that the premutation of Fragile X in females affects their performance of executive functions and may have impact on everyday functioning.
Collapse
Affiliation(s)
- Osnat Segal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-522998404
| | - Tamar Kowal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | | | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Jalnapurkar I, Frazier JA, Roth M, Cochran DM, Foley A, Merk T, Venuti L, Ronco L, Raines S, Cadavid D. The feasibility and utility of hair follicle sampling to measure FMRP and FMR1 mRNA in children with or without fragile X syndrome: a pilot study. J Neurodev Disord 2022; 14:57. [PMID: 36494616 PMCID: PMC9733195 DOI: 10.1186/s11689-022-09465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (> 200 base pairs) on the promotor region of the fragile X messenger ribonucleoprotein 1 gene (FMR1). This leads to the deficiency or absence of the encoded protein, fragile X messenger ribonucleoprotein 1 (FMRP). FMRP has a central role in the translation of mRNAs involved in synaptic connections and plasticity. Recent studies have demonstrated the benefit of therapeutics focused on reactivation of the FMR1 locus towards improving key clinical phenotypes via restoration of FMRP and ultimately disease modification. A key step in future studies directed towards this effort is the establishment of proof of concept (POC) for FMRP reactivation in individuals with FXS. For this, it is key to determine the feasibility of repeated collection of tissues or fluids to measure FMR1 mRNA and FMRP. METHODS Individuals, ages 3 to 22 years of age, with FXS and those who were typically developing participated in this single-site pilot clinical biomarker study. The repeated collection of hair follicles was compared with the collection of blood and buccal swabs for detection of FMR1 mRNA and FMRP and related molecules. RESULTS There were n = 15 participants, of whom 10 had a diagnosis of FXS (7.0 ± 3.56 years) and 5 were typically developing (8.2 ± 2.77 years). Absolute levels of FMRP and FMR1 mRNA were substantially higher in healthy participants compared to full mutation and mosaic FXS participants and lowest in the FXS boys. Measurement of FMR1 mRNA and FMRP levels by any method did not show any notable variation by collection location at home versus office across the various sample collection methodologies of hair follicle, blood sample, and buccal swab. CONCLUSION Findings demonstrated that repeated sampling of hair follicles in individuals with FXS, in both, home, and office settings, is feasible, repeatable, and can be used for measurement of FMR1 mRNA and FMRP in longitudinal studies.
Collapse
Affiliation(s)
- Isha Jalnapurkar
- grid.410516.70000 0001 0707 2056Department of Psychiatry, EK Shriver Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Jean A. Frazier
- grid.410516.70000 0001 0707 2056Department of Psychiatry, EK Shriver Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark Roth
- grid.509699.a0000 0004 5907 6392Fulcrum Therapeutics, Cambridge, MA USA
| | - David M. Cochran
- grid.410516.70000 0001 0707 2056Department of Psychiatry, EK Shriver Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Ann Foley
- grid.410516.70000 0001 0707 2056Department of Psychiatry, EK Shriver Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Taylor Merk
- grid.410516.70000 0001 0707 2056Department of Psychiatry, EK Shriver Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Lauren Venuti
- grid.410516.70000 0001 0707 2056Department of Psychiatry, EK Shriver Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Lucienne Ronco
- grid.509699.a0000 0004 5907 6392Fulcrum Therapeutics, Cambridge, MA USA
| | - Shane Raines
- grid.509699.a0000 0004 5907 6392Fulcrum Therapeutics, Cambridge, MA USA
| | - Diego Cadavid
- grid.509699.a0000 0004 5907 6392Fulcrum Therapeutics, Cambridge, MA USA
| |
Collapse
|
4
|
FMRP Levels in Human Peripheral Blood Leukocytes Correlates with Intellectual Disability. Diagnostics (Basel) 2021; 11:diagnostics11101780. [PMID: 34679478 PMCID: PMC8534530 DOI: 10.3390/diagnostics11101780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. FXS is an X-linked, neurodevelopmental disorder caused by a CGG trinucleotide repeat expansion in the 5′ untranslated region (UTR) of the Fragile X Mental Retardation gene, FMR1. Greater than 200 CGG repeats results in epigenetic silencing of the gene leading to the deficiency or absence of Fragile X mental retardation protein (FMRP). The loss of FMRP is considered the root cause of FXS. The relationship between neurological function and FMRP expression in peripheral blood mononuclear cells (PBMCs) has not been well established. Assays to detect and measure FMR1 and FMRP have been described; however, none are sufficiently sensitive, precise, or quantitative to properly characterize the relationships between cognitive ability and CGG repeat number, FMR1 mRNA expression, or FMRP expression measured in PBMCs. To address these limitations, two novel immunoassays were developed and optimized, an electro-chemiluminescence immunoassay and a multiparameter flow cytometry assay. Both assays were performed on PMBCs isolated from 27 study participants with FMR1 CGG repeats ranging from normal to full mutation. After correcting for methylation, a significant positive correlation between CGG repeat number and FMR1 mRNA expression levels and a significant negative correlation between FMRP levels and CGG repeat expansion was observed. Importantly, a high positive correlation was observed between intellectual quotient (IQ) and FMRP expression measured in PBMCs.
Collapse
|
5
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Kim K, Hessl D, Randol JL, Espinal GM, Schneider A, Protic D, Aydin EY, Hagerman RJ, Hagerman PJ. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS One 2019; 14:e0226811. [PMID: 31891607 PMCID: PMC6938341 DOI: 10.1371/journal.pone.0226811] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.
Collapse
Affiliation(s)
- Kyoungmi Kim
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - David Hessl
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Andrea Schneider
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Dragana Protic
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Elber Yuksel Aydin
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Randi J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Paul J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Nayar K, McKinney W, Hogan AL, Martin GE, La Valle C, Sharp K, Berry-Kravis E, Norton ES, Gordon PC, Losh M. Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation. PLoS One 2019; 14:e0219924. [PMID: 31348790 PMCID: PMC6660192 DOI: 10.1371/journal.pone.0219924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023] Open
Abstract
The FMR1 premutation (PM) is relatively common in the general population. Evidence suggests that PM carriers may exhibit subtle differences in specific cognitive and language abilities. This study examined potential mechanisms underlying such differences through the study of gaze and language coordination during a language processing task (rapid automatized naming; RAN) among female carriers of the FMR1 PM. RAN taps a complex set of underlying neuropsychological mechanisms, with breakdowns implicating processing disruptions in fundamental skills that support higher order language and executive functions, making RAN (and analysis of gaze/language coordination during RAN) a potentially powerful paradigm for revealing the phenotypic expression of the FMR1 PM. Forty-eight PM carriers and 56 controls completed RAN on an eye tracker, where they serially named arrays of numbers, letters, colors, and objects. Findings revealed a pattern of inefficient language processing in the PM group, including a greater number of eye fixations (namely, visual regressions) and reduced eye-voice span (i.e., the eyes' lead over the voice) relative to controls. Differences were driven by performance in the latter half of the RAN arrays, when working memory and processing load are the greatest, implicating executive skills. RAN deficits were associated with broader social-communicative difficulties among PM carriers, and with FMR1-related molecular genetic variation (higher CGG repeat length, lower activation ratio, and increased levels of the fragile X mental retardation protein; FMRP). Findings contribute to an understanding of the neurocognitive profile of PM carriers and indicate specific gene-behavior associations that implicate the role of the FMR1 gene in language-related processes.
Collapse
Affiliation(s)
- Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Walker McKinney
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas, United States of America
| | - Abigail L. Hogan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Gary E. Martin
- St. John’s University, Communication Sciences and Disorders, Queens, New York, United States of America
| | - Chelsea La Valle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Sharp
- Pediatrics, Rush University Medical Center, Chicago, Illinois, United States of America
| | | | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Peter C. Gordon
- Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
8
|
Chernenok M, Burris JL, Owen E, Rivera SM. Impaired Attention Orienting in Young Children With Fragile X Syndrome. Front Psychol 2019; 10:1567. [PMID: 31354578 PMCID: PMC6635477 DOI: 10.3389/fpsyg.2019.01567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/20/2019] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a trinucleotide CGG expansion within the FMR1 gene located on the X chromosome. Children with FXS have been shown to be impaired in dynamic visual attention processing. A key component of dynamic processing is orienting—a perceptual ability that requires disengagement and engagement of attention from one stimulus to fixate on a second. Orienting, specifically the disengagement and engagement of attention, has previously not been studied in young children with FXS. Using an eye tracking gap-overlap task, the present study investigated visual disengagement and engagement in young children with FXS, compared to mental age (MA)- and chronological age (CA)-matched typically developing children. On gap trials, the central stimulus elicited fixation, but then disappeared before the peripheral target appeared, imposing a visual gap between stimuli. On overlap trials, the central stimulus elicited fixation, and remained present when the peripheral target appeared, creating visual competition. A gap effect emerges when latencies to shift to the peripheral target are longer in overlap versus gap conditions, reflecting the recruitment of cortical and subcortical disengagement and engagement mechanisms. The gap effect was measured as the latency to orient attention to the peripheral target during gap versus overlap conditions. Both MA and CA groups showed the expected gap effect, where children were slower to orient to peripheral targets on overlap trials than on gap trials. In contrast, in the FXS group, saccadic latencies between gap and overlap trials were not significantly different, indicating no significant gap effect. These findings suggest disrupted attentional engagement patterns in FXS that may be underlying impairments in attention orienting, and suggest potential targets for attention training in this population.
Collapse
Affiliation(s)
- Mariya Chernenok
- Department of Human Ecology, University of California, Davis, Davis, CA, United States.,Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Jessica L Burris
- Department of Psychology, Rutgers University, Newark, NJ, United States
| | - Emily Owen
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Susan M Rivera
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
9
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Harkins CM, Dominick KC, Wink LK, Pedapati EV, Shaffer RC, Fitzpatrick SE, Davenport MH, Sweeney JA, Erickson CA. Challenges in Conducting Clinical Trials for Pharmacotherapies in Fragile X Syndrome: Lessons Learned. Pharmaceut Med 2017. [DOI: 10.1007/s40290-017-0199-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, Trollor J, Bradshaw JL, Cohen J, Cornish KM. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol Aging 2014; 35:2179.e7-13. [PMID: 24814676 DOI: 10.1016/j.neurobiolaging.2014.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
Abstract
Recent studies report a higher risk of dementia and motor symptoms in females with the fragile X mental retardation 1 premutation (PM-carriers) than has hitherto been appreciated. Here, we use dual-task gait paradigms to identify potential markers of cognitive and motor decline in female PM-carriers. Spatiotemporal gait characteristics and variability of gait were assessed during single- and dual-task conditions in 28 female PM-carriers (mean age 41.32 ± 8.03 years) and 31 female controls with normal fragile X mental retardation 1 alleles (mean age 41.61 ± 8.30 years). Despite comparable gait characteristics at baseline, gait performance was significantly poorer for PM-carriers when performing concurrent working memory tasks (counting backwards by 3's or 7's) when compared with controls. Correlational analyses showed that low working memory capacity was significantly associated with dual-task interference for the gait domains of pace (speed, step length) and variability (step time, swing time) in PM-carriers. Multiple regression analyses further showed that the interaction between age and CGG repeat length was strongly predictive of gait variability during dual-task performance. These findings indicate for the first time that vulnerability in specific domains of gait control may act as sensitive surrogate markers of future decline in female PM-carriers.
Collapse
Affiliation(s)
- Claudine M Kraan
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Darren R Hocking
- Olga Tennison Research Centre, School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sylvia A Metcalfe
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alison D Archibald
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Joanne Fielding
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Julian Trollor
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia; Centre for Health Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John L Bradshaw
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jonathan Cohen
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Centre for Developmental Disability Health Victoria, Monash University, Clayton, Victoria, Australia; Fragile X Alliance Inc (Clinic and Resource Centre), North Caufield, Victoria, Australia
| | - Kim M Cornish
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, Trollor J, Bradshaw JL, Cohen J, Cornish KM. Impaired response inhibition is associated with self-reported symptoms of depression, anxiety, and ADHD in female FMR1 premutation carriers. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:41-51. [PMID: 24166828 DOI: 10.1002/ajmg.b.32203] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
Fragile X Mental Retardation 1 (FMR1) premutation carriers (PM-carriers) have a defective trinucleotide expansion on the FMR1 gene that is associated with continuum of neuropsychological and mental disorders. Currently, little is known about the distinct subcomponents of executive function potentially impaired in female PM-carriers, and there have been no investigations into associations between executive function and incidences of mental disorders. A total of 35 female PM-carriers confirmed by Asuragen triple primed PCR DNA testing and 35 age- and intelligence-matched controls completed tests of executive function (i.e., response inhibition and working memory) and self-reported on social anxiety, depression, and ADHD predominantly inattentive (ADHD-PI) symptoms. Compared to controls, PM-carriers were significantly elevated on self-reported social anxiety and ADHD-PI symptoms. Irrespective of mental symptoms, female PM-carries performed significantly worse than controls on a response inhibition test, and further investigations revealed significant correlations between executive function performance and self-reported symptoms of anxiety, depression and ADHD-PI. Critically, among PM-carriers with good executive function performance, no women exceeded threshold markers for probable caseness of mental disorder. However, rates of probable caseness were elevated in those with average performance (response inhibition: social anxiety: 41.7%; depression: 20%; ADHD: 44.4%; working memory: social anxiety: 27.3%; depression: 9.1%; ADHD: 18.2%) and highly elevated for those with poor executive function performance (response inhibition: social anxiety: 58.3%; depression: 80%; ADHD: 55.6%; working memory: social anxiety: 100%; depression: 50%; ADHD: 83.3%). These data suggest that subtle executive dysfunction may be a useful neuropsychological indicator for a range of mental disorders previously reported in female PM-carriers.
Collapse
Affiliation(s)
- Claudine M Kraan
- Faculty of Medicine, Nursing, and Health Sciences, School of Psychology & Psychiatry, Monash University, Clayton, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev 2013; 37:522-47. [DOI: 10.1016/j.neubiorev.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
|
14
|
Iliff AJ, Renoux AJ, Krans A, Usdin K, Sutton MA, Todd PK. Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice. Hum Mol Genet 2012; 22:1180-92. [PMID: 23250915 DOI: 10.1093/hmg/dds525] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fragile X premutation-associated disorders, including Fragile X-associated Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 5' untranslated region (UTR) of the FMR1 gene. Premutation-sized repeats increase FMR1 transcription but impair rapid translation of the Fragile X mental retardation protein (FMRP), which is absent in Fragile X Syndrome (FXS). Normally, FMRP binds to RNA and regulates metabotropic glutamate receptor (mGluR)-mediated synaptic translation, allowing for dendritic synthesis of several proteins. FMRP itself is also synthesized at synapses in response to mGluR activation. However, the role of activity-dependent translation of FMRP in synaptic plasticity and Fragile X-premutation-associated disorders is unknown. To investigate this question, we utilized a CGG knock-in mouse model of the Fragile X premutation with 120-150 CGG repeats in the mouse Fmr1 5' UTR. These mice exhibit increased Fmr1 mRNA production but impaired FMRP translational efficiency, leading to a modest reduction in basal FMRP expression. Cultured hippocampal neurons and synaptoneurosomes derived from CGG KI mice demonstrate impaired FMRP translation in response to the group I mGluR agonist 3,5-dihydroxyphenylglycine. Electrophysiological analysis reveals enhanced mGluR-mediated long-term depression (mGluR-LTD) at CA3-CA1 synapses in acute hippocampal slices prepared from CGG KI mice relative to wild-type littermates, similar to Fmr1 knockout mice. However, unlike mGluR-LTD in mice completely lacking FMRP, mGluR-LTD in CGG knock-in mice remains dependent on new protein synthesis. These studies demonstrate partially overlapping synaptic plasticity phenotypes in mouse models of FXS and Fragile X premutation disorders and support a role for activity-dependent synthesis of FMRP in enduring forms of synaptic plasticity.
Collapse
Affiliation(s)
- Adam J Iliff
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
15
|
Politte LC, McDougle CJ. Phase II and III drugs for the treatment of fragile X syndrome. Expert Opin Orphan Drugs 2012. [DOI: 10.1517/21678707.2013.750240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Young adult male carriers of the fragile X premutation exhibit genetically modulated impairments in visuospatial tasks controlled for psychomotor speed. J Neurodev Disord 2012; 4:26. [PMID: 23148490 PMCID: PMC3506571 DOI: 10.1186/1866-1955-4-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023] Open
Abstract
Background A previous study reported enhanced psychomotor speed, and subtle but significant cognitive impairments, modulated by age and by mutations in the fragile X mental retardation 1 (FMR1) gene in adult female fragile X premutation carriers (fXPCs). Because male carriers, unlike females, do not have a second, unaffected FMR1 allele, male fXPCs should exhibit similar, if not worse, impairments. Understanding male fXPCs is of particular significance because of their increased risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Male fXPCs (n = 18) and healthy control (HC) adults (n = 26) aged less than 45 years performed two psychomotor speed tasks (manual and oral) and two visuospatial tasks (magnitude comparison and enumeration). In the magnitude comparison task, participants were asked to compare and judge which of two bars was larger. In the enumeration task, participants were shown between one and eight green bars in the center of the screen, and asked to state the total number displayed. Enumeration typically proceeds in one of two modes: subitizing, a fast and accurate process that works only with a small set of items, and counting, which requires accurate serial-object detection and individuation during visual search. We examined the associations between the performance on all tasks and the age, full-scale intelligent quotient, and CGG repeat length of participants. Results We found that in the magnitude comparison and enumeration tasks, male fXPCs exhibited slower reaction times relative to HCs, even after controlling for simple reaction time. Conclusions Our results indicate that male fXPCs as a group show impairments (slower reaction times) in numerical visuospatial tasks, which are consistent with previous findings. This adds to a growing body of literature characterizing the phenotype in fXPCs who are asymptomatic for FXTAS. Future longitudinal studies are needed to determine how these impairments relate to risk of developing FXTAS.
Collapse
|
17
|
Godler DE, Slater HR, Bui QM, Storey E, Ono MY, Gehling F, Inaba Y, Francis D, Hopper JL, Kinsella G, Amor DJ, Hagerman RJ, Loesch DZ. Fragile X Mental Retardation 1 (FMR1) Intron 1 Methylation in Blood Predicts Verbal Cognitive Impairment in Female Carriers of Expanded FMR1 Alleles: Evidence from a Pilot Study. Clin Chem 2012; 58:590-8. [DOI: 10.1373/clinchem.2011.177626] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
BACKGROUND
Cognitive status in females with mutations in the FMR1 (fragile X mental retardation 1) gene is highly variable. A biomarker would be of value for predicting which individuals were liable to develop cognitive impairment and could benefit from early intervention. A detailed analysis of CpG sites bridging exon 1 and intron 1 of FMR1, known as fragile X–related epigenetic element 2 (FREE2), suggests that a simple blood test could identify these individuals.
METHODS
Study participants included 74 control females (<40 CGG repeats), 62 premutation (PM) females (55–200 CGG repeats), and 18 full-mutation (FM) females assessed with Wechsler intelligence quotient (IQ) tests. We used MALDI-TOF mass spectrometry to determine the methylation status of FREE2 CpG sites that best identified low-functioning (IQ <70) FM females (>200 CGG repeats), compared the results with those for Southern blot FMR1 activation ratios, and related these assessments to the level of production of the FMR1 protein product in blood.
RESULTS
A methylation analysis of intron 1 CpG sites 10–12 showed the highest diagnostic sensitivity (100%) and specificity (98%) of all the molecular measures tested for detecting females with a standardized verbal IQ of <70 among the study participants. In the group consisting of only FM females, methylation of these sites was significantly correlated with full-scale IQ, verbal IQ, and performance IQ. Several verbal subtest scores showed strong correlation with the methylation of these sites (P = 1.2 × 10−5) after adjustment for multiple measures.
CONCLUSIONS
The data suggest that hypermethylation of the FMR1 intron 1 sites in blood is predictive of cognitive impairment in FM females, with implications for improved fragile X syndrome diagnostics in young children and screening of the newborn population.
Collapse
Affiliation(s)
- David E Godler
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Howard R Slater
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Quang M Bui
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Australia
| | - Elsdon Storey
- Van Cleef Roet Centre for Nervous Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Michele Y Ono
- UC Davis MIND Institute, Sacramento, CA
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, CA
| | - Freya Gehling
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Yoshimi Inaba
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Australia
| | - Glynda Kinsella
- School of Psychological Science, La Trobe University, Melbourne, Australia
| | - David J Amor
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Randi J Hagerman
- UC Davis MIND Institute, Sacramento, CA
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, CA
| | - Danuta Z Loesch
- School of Psychological Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
18
|
Loesch D, Hagerman R. Unstable Mutations in the FMR1 Gene and the Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:78-114. [DOI: 10.1007/978-1-4614-5434-2_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
19
|
Budimirovic DB, Kaufmann WE. What can we learn about autism from studying fragile X syndrome? Dev Neurosci 2011; 33:379-94. [PMID: 21893949 PMCID: PMC3254037 DOI: 10.1159/000330213] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
Despite early controversy, it is now accepted that a substantial proportion of children with fragile X syndrome (FXS) meets diagnostic criteria for autism spectrum disorder (ASD). This change has led to an increased interest in studying the association of FXS and ASD because of the clinical consequences of their co-occurrence and the implications for a better understanding of ASD in the general population. Here, we review the current knowledge on the behavioral, neurobiological (i.e., neuroimaging), and molecular features of ASD in FXS, as well as the insight into ASD gained from mouse models of FXS. This review covers critical issues such as the selectivity of ASD in disorders associated with intellectual disability, differences between autistic features and ASD diagnosis, and the relationship between ASD and anxiety in FXS patients and animal models. While solid evidence supporting ASD in FXS as a distinctive entity is emerging, neurobiological and molecular data are still scarce. Animal model studies have not been particularly revealing about ASD in FXS either. Nevertheless, recent studies provide intriguing new leads and suggest that a better understanding of the bases of ASD will require the integration of multidisciplinary data from FXS and other genetic disorders.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Walter E. Kaufmann
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
20
|
Qin M, Entezam A, Usdin K, Huang T, Liu ZH, Hoffman GE, Smith CB. A mouse model of the fragile X premutation: effects on behavior, dendrite morphology, and regional rates of cerebral protein synthesis. Neurobiol Dis 2011; 42:85-98. [PMID: 21220020 DOI: 10.1016/j.nbd.2011.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/30/2010] [Accepted: 01/02/2011] [Indexed: 11/24/2022] Open
Abstract
Carriers of FMR1 premutation alleles have 55-200 CGG repeats in the 5' untranslated region of the gene. These individuals are at risk for fragile X associated primary ovarian insufficiency (females) and, in late life, fragile X associated tremor and ataxia syndrome (males, and to a lesser extent, females). Premutation carrier status can also be associated with autism spectrum disorder, attention deficit hyperactivity disorder, and some cognitive deficits. In premutation carriers, FMR1 mRNA levels are often higher than those with normal sized alleles. In contrast, in subjects with full mutation alleles, (>200 repeats) the FMR1 gene is silenced and FMR1 mRNA and its product, FMRP, are absent. We have studied a male knock-in (KI) mouse model of the fragile X premutation (120-140 repeats) during young adulthood. In comparison to wild type, KI mice were hyperactive, exhibited less anxiety in both the open field and the elevated zero maze, were impaired on the passive avoidance test, and showed some subtle deficits on a test of social interaction. Motor learning as assessed by the rotarod test was normal. Dendritic arbors were less complex and spine densities and lengths increased in medial prefrontal cortex, basal lateral amygdala, and hippocampus compared with wild type. Regional rates of cerebral protein synthesis measured in vivo in KI mice were increased. KI mice also had elevated levels of Fmr1 mRNA and decreased levels of FMRP. Our results highlight similarities in phenotype between KI and Fmr1 knockout mice and suggest that the decreased concentration of FMRP contributes to the phenotype in young adult KI mice.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lightbody AA, Reiss AL. Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies. ACTA ACUST UNITED AC 2010; 15:343-52. [PMID: 20014368 DOI: 10.1002/ddrr.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the cognitive and behavioral outcomes seen in individuals with FraX. Specifically, structural MRI studies have established and begun to refine the specific topography of neuroanatomical variation associated with FraX. In addition, functional neuroimaging studies have begun to elucidate the neural underpinnings of many of the unique characteristics of FraX including difficulties with eye gaze, executive functioning, and behavioral inhibition. This review highlights studies with a focus on the relevant gene-brain-behavior connections observed in FraX. The relationship of brain regions and activation patterns to FMRP are discussed as well as the clinical cognitive and behavioral correlates of these neuroimaging findings.
Collapse
Affiliation(s)
- Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road-Room 1369, Stanford, CA 94305-5795, USA.
| | | |
Collapse
|
22
|
Abstract
The mutations in the FMR1 gene have been described as a family of disorders called fragile X-associated disorders including fragile X syndrome, fragile X-associated tremor/ataxia syndrome, primary ovarian insufficiency, and other problems associated with the premutation, such as hypothyroidism, hypertension, neuropathy, anxiety, depression, attention-deficit hyperactivity disorders, and autism spectrum disorders. The premutation is relatively common in the general population affecting 1 of 130 to 250 female individuals and 1 of 250 to 800 male individuals. Therefore, to provide appropriate treatment and genetic counseling for all of the carriers and affected individuals in a family, a detailed family history that reviews many of the disorders that are related to both the premutation and the full mutation should be carried out as exemplified in these cases. To facilitate the integration of this knowledge into clinical practice, this is the first case report that demonstrates only premutation involvement across 3 generations.
Collapse
|
23
|
Is there evidence for neuropsychological and neurobehavioral phenotypes among adults without FXTAS who carry the FMR1 premutation? A review of current literature. Genet Med 2009; 11:79-89. [PMID: 19265746 DOI: 10.1097/gim.0b013e31818de6ee] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Carriers of expanded, but unmethylated, premutation alleles of the fragile X mental retardation gene are at risk for a late-onset tremor/ataxia syndrome, mostly affecting men over age 50. However, the general neuropsychological and neurobehavioral impact of carrying a premutation allele in younger adults not affected by the tremor/ataxia syndrome remains unclear. Past studies have utilized varying study designs resulting in inconsistent conclusions. To better understand the current evidence of the influence of the premutation on such traits in adult carriers, we reviewed the literature and identified 16 studies that met conservative inclusion criteria, including molecular measures of the fragile X mental retardation gene CGG triplet repeat length and standard measures of neurobehavioral and neurocognitive phenotypes. A review of these studies is presented to assess the evidence for possible premutation-associated neuropsychological deficits among adult men and women who do not meet diagnostic criteria of the tremor/ataxia syndrome. Results of these studies, and possible reasons for inconsistent conclusions, are discussed. The primary conclusion from this review is the need for further research using a standard protocol in a large multisite project to ensure the necessary sample size.
Collapse
|
24
|
Hatton DD, Wheeler A, Sideris J, Sullivan K, Reichardt A, Roberts J, Clark R, Bailey DB. Developmental trajectories of young girls with fragile x syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2009; 114:161-171. [PMID: 19374463 DOI: 10.1352/1944-7558-114.3.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To describe the early phenotype of girls with full mutation fragile X, we used 54 observations of 15 girls between the ages of 6 months and 9 years to examine developmental trajectories as measured by the Battelle Development Inventory. In this sample, autistic behavior was associated with poorer developmental outcomes, primarily due to interactions of age with autistic behavior, even though autistic behavior, measured continuously, was relatively mild. Although this small sample, ascertained primarily through male relatives with fragile X syndrome, limits generalizability, considerable variability in developmental outcome in young girls was documented. In addition, findings support previous research suggesting that even mild autistic behaviors in girls can be associated with developmental outcomes.
Collapse
|
25
|
Mínguez M, Ibáñez B, Ribate MP, Ramos F, García-Alegría E, Fernández-Rivas A, Ruiz-Parra E, Poch M, Alonso A, Martinez-Bouzas C, Beristain E, Tejada MI. Risk of cognitive impairment in female premutation carriers of fragile X premutation: analysis by means of robust segmented linear regression models. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:262-70. [PMID: 18563710 DOI: 10.1002/ajmg.b.30803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This report describes a study focused on the relationship between CGG repeat length, FMRP, mRNA levels and cognitive functioning in premutation carriers (PM) carriers of Fragile X Syndrome (FXS). We studied 60 females-43 with PM and 17 with normal (N) alleles-from 25 FXS Spanish families. The Wechsler scales were administered to all subjects and new blood samples and hair roots were taken to study mRNA and FMRP levels. Using lowess curves together with segmented models we showed that within the premutation range, IQ scores tend to decrease when the number of CGG repeats increases and the FMRP values decrease. Furthermore, we discovered cut-off points in the molecular variables that seem to change the probability of having some cognitive impairment. Specifically, for those PM females in the upper premutation range (CGG > or = 100) and with FMRP expression < 60% in hair roots, a 10% decrement of FMRP expression represents a significant decrease in IQ scores of about six points, which is more evident for Full-Scale IQ (P-value = 0.035) and Performance IQ (P-value = 0.045) than for Verbal IQ (P-value = 0.074). On the contrary, we did not find any significant correlation between FMR1 mRNA levels and the IQ scores, probably due to the fact that mRNA levels were measured in blood. In conclusion, our findings suggest that the PM can have some effect on cognitive ability in female carriers, although these effects may be subtle. In these cases, it would be advisable to carry out a hair root analysis of FMRP.
Collapse
|
26
|
Kogan CS, Turk J, Hagerman RJ, Cornish KM. Impact of the Fragile X mental retardation 1 (FMR1) gene premutation on neuropsychiatric functioning in adult males without fragile X-associated Tremor/Ataxia syndrome: a controlled study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:859-72. [PMID: 18165971 DOI: 10.1002/ajmg.b.30685] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fragile X Syndrome is the most common heritable form of mental retardation caused by silencing of the FMR1 gene, which arises from intergenerational trinucleotide repeat expansion leading to full mutation. An intermediary carrier condition, known as the premutation, is characterized by expansion up to 200 repeats without concomitant gene silencing. This prevalent allelic variant was initially thought to be free of phenotypic effects. However, recent reports have identified a degenerative disease, Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) in older men as well as premature ovarian failure in women. Previously reports are inconsistent regarding the neuropsychiatric phenotype associated with premutation due to small sample sizes, ascertainment bias, lack of adequate control groups, administration of measures with poor psychometric properties, and the confounding effects of FXTAS. We addressed these problems by conducting a controlled study of male carriers (n = 40) of the premutation without manifest symptoms of FXTAS, comparing their responses on specific, reliable, and valid measures of neuropsychiatric functioning to those of individuals with shared family environment (n = 22) and non-carrier comparison males (n = 43). Multivariate analyses revealed that the premutation confers significant risk for working memory difficulties, an associated feature of Attention-Deficit Disorder. Furthermore, both the family controls and men with premutation exhibited higher rates of Alcohol Abuse as compared to non-carrier control men. These findings highlight the importance of recognizing the distinct phenotypic outcomes that characterize the Fragile X premutation and the subtle risk factors that can act as precursors to more significant psychiatric impairment.
Collapse
Affiliation(s)
- Cary S Kogan
- School of Psychology, University of Ottawa, Ottawa, Canada.
| | | | | | | |
Collapse
|
27
|
Cornish KM, Li L, Kogan CS, Jacquemont S, Turk J, Dalton A, Hagerman RJ, Hagerman PJ. Age-dependent cognitive changes in carriers of the fragile X syndrome. Cortex 2008; 44:628-36. [PMID: 18472033 PMCID: PMC11060834 DOI: 10.1016/j.cortex.2006.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/26/2006] [Accepted: 11/20/2006] [Indexed: 11/16/2022]
Abstract
Fragile X syndrome is a neurodevelopmental disorder that is caused by the silencing of a single gene on the X chromosome, the fragile X mental retardation 1 (FMR1) gene. Affected individuals display a unique neurocognitive phenotype that includes significant impairment in inhibitory control, selective attention, working memory, and visual-spatial cognition. In contrast, little is known about the trajectory and specificity of any cognitive impairment associated with the fragile X premutation (i.e., "carrier status") or its relationship with the recently identified neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). In the present study, we evaluated a broad sample of 40 premutation males (PM) aged 18-69 years matched on age and IQ to 67 unaffected comparison males (NC). Performance was compared across a range of cognitive domains known to be impaired in fragile X syndrome (i.e., "full mutation"). Tremor was also assessed using a self-report neurological questionnaire. PM displayed statistically significant deficits in their ability to inhibit prepotent responses, differentiating them from NC from age 30 onwards. With increasing age, the two groups follow different trajectories, with PM developing progressively more severe problems in inhibitory control. This deficit also has a strong co-occurrence in males displaying FXTAS-related symptomatology (p<.001). Selective attention was also impaired in PM but did not show any disproportionate aging effect. No other cognitive deficits were observed. We conclude that an inhibitory deficit and its impact across the lifespan are specifically associated with the fragile X premutation status, and may be a precursor for development of a more severe form of cognitive impairment or dementia, which has been reported in patients with the diagnosis of FXTAS.
Collapse
Affiliation(s)
- Kim M Cornish
- Neuroscience Laboratory for Research and Education in Developmental Disorders, McGill University, Montreal, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cornish K, Turk J, Hagerman R. The fragile X continuum: new advances and perspectives. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2008; 52:469-82. [PMID: 18444988 DOI: 10.1111/j.1365-2788.2008.01056.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fragile X syndrome is the world's most common hereditary cause of intellectual disability in men and to a lesser extent in women. The disorder is caused by the silencing of a single gene on the X chromosome, the Fragile X Mental Retardation Gene-1. A substantial body of research across the disciplines of molecular genetics, child psychiatry and developmental neuroscience bears testament to a decade of exciting and innovative science that has advanced our knowledge about the fragile X 'signature' or influence across cognitive and social development. The core aims of this review are to first discuss fragile X syndrome and premutation involvement in the context of current advances that demonstrate the dynamic nature of the genotype on phenotypic outcomes. Second, to discuss the implications of these recent advances for the development of clinical and educational interventions and resource tools that target specific phenotypic 'signatures' within the fragile X continuum.
Collapse
Affiliation(s)
- K Cornish
- McGill Child Laboratory for Research and Education in Developmental Disorders, McGill University, Montréal, Canada.
| | | | | |
Collapse
|
29
|
Lenroot RK, Giedd JN. The changing impact of genes and environment on brain development during childhood and adolescence: initial findings from a neuroimaging study of pediatric twins. Dev Psychopathol 2008; 20:1161-75. [PMID: 18838036 PMCID: PMC2892674 DOI: 10.1017/s0954579408000552] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human brain development is created through continuing complex interactions of genetic and environmental influences. The challenge of linking specific genetic or environmental risk factors to typical or atypical behaviors has led to interest in using brain structural features as an intermediate phenotype. Twin studies in adults have found that many aspects of brain anatomy are highly heritable, demonstrating that genetic factors provide a significant contribution to variation in brain structures. Less is known about the relative impact of genes and environment while the brain is actively developing. We summarize results from the ongoing National Institute of Mental Health child and adolescent twin study that suggest that heritability of different brain areas changes over the course of development in a regionally specific fashion. Areas associated with more complex reasoning abilities become increasingly heritable with maturation. The potential mechanisms by which gene-environment interactions may affect heritability values during development is discussed.
Collapse
|
30
|
Kaufmann WE, Capone GT, Clarke M, Budimirovic DB. Autism in Genetic Intellectual Disability. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
31
|
Alanay Y, Unal F, Turanli G, Alikaşifoğlu M, Alehan D, Akyol U, Belgin E, Sener C, Aktaş D, Boduroğlu K, Utine E, Volkan-Salanci B, Ozusta S, Genç A, Başar F, Sevinç S, Tunçbilek E. A multidisciplinary approach to the management of individuals with fragile X syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2007; 51:151-61. [PMID: 17217479 DOI: 10.1111/j.1365-2788.2006.00942.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of intellectual disability. Since the identification of the responsible gene (FMR1) and its protein (FMRP), there has been enormous progress in both clinical and pathogenetic research on the neurobehavioural aspects of the condition. However, studies regarding other medical problems anticipated in individuals with FXS are limited. A multidisciplinary study evaluating various causes of morbidity in the same group has not been published yet. METHODS Twenty-four boys with FXS full mutation were recruited out of a larger group of 103 diagnosed in one centre over the past 10 years. Ear nose and throat, eye and cardiac examinations were performed in addition to routine cognitive, behavioural, neurological and speech and language assessments. RESULTS The average IQ score was 49.8 +/- 20 (range 25-90). There were four patients (18%) with IQ above 70. Using DSM-IV, attention deficit hyperactivity disorder was diagnosed in five boys out of 22 examined (23%), while 32% were diagnosed with pervasive developmental disorder. The seizure frequency was 17%. A psychiatric disorder was diagnosed in six out of eight boys with electroencephalogram abnormalities (75%). Minimal conductive hearing loss was found in five (5/22) patients. There was significant delay in both expressive and receptive language skills. Ocular findings were refractive errors (13%) and strabismus (4.4%). Mitral valve prolapsus (MVP) was observed in 3/22 (13.7%) patients and aortic annulus dilatation was present in 2/22 (9%) patients. CONCLUSIONS Frequency of psychiatric diagnoses made with DSM-IV were in parallel to those reported in the literature. Comorbidity of seizures and psychiatric disorders was noteworthy. The percentage of 'high-functioning' full mutation males supports the previous observations. Ear nose and throat and eye examination revealed remarkably lower prevalence of abnormal findings than reported. MVP was slightly less frequent compared with the single study in the literature. Age at the time of examination had an effect on the outcome of cardiac evaluation. These findings will guide us in future management of the group of patients followed in our institution. The protocol applied provides an applicable outline for multidisciplinary institutional settings dealing with individuals with FXS.
Collapse
Affiliation(s)
- Y Alanay
- Clinical Genetics Section, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Loesch DZ, Bui QM, Dissanayake C, Clifford S, Gould E, Bulhak-Paterson D, Tassone F, Taylor AK, Hessl D, Hagerman R, Huggins RM. Molecular and cognitive predictors of the continuum of autistic behaviours in fragile X. Neurosci Biobehav Rev 2006; 31:315-26. [PMID: 17097142 PMCID: PMC2145511 DOI: 10.1016/j.neubiorev.2006.09.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 09/11/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
The distributions of scores for autistic behaviours obtained from the Autism Diagnostic Observation Scale-Generic (ADOS-G) were investigated in 147 males and females affected with the full mutation in the fragile X mental retardation 1 (FMR1) gene, in 59 individuals with the premutation, and in 42 non-fragile X relatives, aged 4-70 years. The scores representing communication and social interaction were continuously distributed across the two fragile X groups, and they were significantly elevated compared with the non-fragile X controls. Strong relationships were found between both these scores and FMRP deficits, but they became insignificant for social interaction, and the sum of social interaction and communication scores, when FSIQ was included as another predictor of autism scores. Other significant predictors of these scores in both sexes were those executive skills which related to verbal fluency, and to the regulation and control of motor behaviour. Overall, our data have shown that cognitive impairment, especially of verbal skills, best explains the comorbidity of autism and fragile X. This implies some more fundamental perturbations of specific neural connections which are essential for both specific behaviours and cognition. We also emphasize that FXS offers a unique molecular model for autism since FMRP regulates the translation of many other genes involved in synaptic formation and plasticity which should be natural targets for further exploration.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Budimirovic DB, Bukelis I, Cox C, Gray RM, Tierney E, Kaufmann WE. Autism spectrum disorder in Fragile X syndrome: differential contribution of adaptive socialization and social withdrawal. Am J Med Genet A 2006; 140A:1814-26. [PMID: 16906564 DOI: 10.1002/ajmg.a.31405] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study extends our previous work on characterizing the profile of social behavior abnormalities in boys with Fragile X (FraX) and autism spectrum disorder (ASD) using clinically oriented behavioral rating scales and standardized instruments. The goal was to further distinguish behavioral parameters contributing to the diagnostic classification of FraX + ASD. The study design included two cohorts of boys with FraX (3-8 years), a larger main cohort for cross-sectional analyses (n = 56, 24 with ASD), and a longitudinal subset (n = 30, 11 with ASD) of the main cohort with up to 3 yearly observations. The focus was on the relative contribution of delayed adaptive socialization and social withdrawal, including item components of their corresponding rating instruments, to the diagnosis of ASD in boys with FraX. Using a combination of regression analyses, we demonstrated that: (1) as delayed socialization, social withdrawal is also a correlate of FraX + ASD; (2) items of social withdrawal scales representing avoidance were the main predictors of ASD status, particularly in older boys; (3) adaptive socialization skills reflecting rules of social behavior and recognition and labeling of emotions, linked to verbal reasoning abilities, were selectively associated with FraX + ASD; (4) adaptive socialization is the primary determinant over time of ASD status in boys with FraX; and (5) integrated adaptive socialization-social withdrawal models allow the identification of distinctive FraX + ASD subgroups. Altogether, our findings suggest that two distinct but interrelated social behavior abnormalities, one linked to impaired cognitive processes (delayed socialization) and the second one to disturbance in limbic circuits (avoidance), play a role in the development of ASD in boys with FraX.
Collapse
Affiliation(s)
- Dejan B Budimirovic
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, Baltimore, Maryland 21211, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Farzin F, Perry H, Hessl D, Loesch D, Cohen J, Bacalman S, Gane L, Tassone F, Hagerman P, Hagerman R. Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with the fragile X premutation. J Dev Behav Pediatr 2006; 27:S137-44. [PMID: 16685180 DOI: 10.1097/00004703-200604002-00012] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fragile X syndrome (FXS) is caused by a full mutation expansion (>200 CGG repeats) in the FMR1 gene that results in a deficiency of the fragile X mental retardation protein. Although most individuals with the premutation (55-200 CGG repeats) are considered unaffected by FXS, recent case studies have documented children with the premutation who have cognitive deficits, behavioral problems, and/or autism spectrum disorders. The objective of this study was to compare the prevalence of autism spectrum disorders (ASD) and attention-deficit hyperactivity disorder (ADHD) symptoms in boys with the premutation who presented as probands, in brothers with the premutation who did not present as probands, and in normal brothers of premutation and/or full mutation carriers. Participants included 43 male children: 14 probands who presented to clinic, 13 nonprobands who were identified through cascade testing (routine genetic testing of family members after identification of a proband) and confirmed to have the premutation, and a control group of 16 male siblings of individuals with the fragile X premutation or full mutation who were negative for the FMR1 mutation. Participants came from 1 of 2 collaborative sites: University of California, Davis and La Trobe University in Australia. Parents completed the Conners' Global Index-Parent Version for assessing symptoms of ADHD and the Social Communication Questionnaire (SCQ) for identifying symptoms of ASD. Children who were in the ASD range on the SCQ (n = 13) underwent further evaluation with either the Autism Diagnostic Observation Schedule-Generic (n = 10) or the Autism Diagnostic Interview-Revised (n = 3). A final diagnosis of ASD included clinical assessment utilizing DSM-IV-TR criteria in addition to the standardized assessments. There was a higher rate of ASD in boys with the premutation presenting as probands (p < 0.001) or nonprobands (p < .04) compared with sibling controls without the premutation. In addition, probands had a significant increase in ADHD symptoms compared with controls (p < .0001). Of the probands, 93% had symptoms of ADHD and 79% had ASD. In the nonproband premutation group, 38% had symptoms of ADHD and 8% had ASD. Thirteen percent of sibling controls had symptoms of ADHD and none had ASD. IQ scores were similar in all 3 groups (p = .13), but the use of psychotropic medications was significantly higher in probands with the premutation compared with that in controls (p < .0001). Developmental problems have been observed in premutation carriers, particularly those who present clinically with behavioral difficulties. Although this study is based on a small sample size, it suggests that premutation carriers, even those who do not present clinically, may be at increased risk for an ASD and/or symptoms of ADHD. If the premutation is identified through cascade testing, then further assessment should be carried out for symptoms of ADHD, social deficits, or learning disabilities.
Collapse
Affiliation(s)
- Faraz Farzin
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The fragile X mental retardation 1 gene (FMR1) mutation causes two disorders: fragile X syndrome (FXS) in those with the full mutation and the fragile X-associated tremor/ataxia syndrome (FXTAS) in some older individuals with the premutation. FXS is caused by a deficiency of the FMR1 protein (FMRP) leading to dysregulation of many genes that create a phenotype with ADHD, anxiety, and autism. FXTAS is caused by the elevation of FMR1-mRNA to levels 2 to 8 times normal in the premutation. This causes an RNA gain of function toxicity leading to brain atrophy, white matter disease, neuronal and astrocytic inclusion formation, and subsequent ataxia, intention tremor, peripheral neuropathy, and cognitive decline. The neurobiology and pathophysiology of FXS and FXTAS are described in detail.
Collapse
Affiliation(s)
- Randi J Hagerman
- Department of Pediatrics, M.I.N.D. Institute, University of California Davis Health System, Sacramento, California 95817, USA.
| |
Collapse
|
36
|
Van Esch H. The Fragile X premutation: new insights and clinical consequences. Eur J Med Genet 2006; 49:1-8. [PMID: 16473304 DOI: 10.1016/j.ejmg.2005.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/12/2005] [Indexed: 11/23/2022]
Abstract
The Fragile X syndrome (FXS, MIM 309550) is still the most prevalent cause of heritable mental retardation, with a frequency of 1/4000 males and 1/6000 females. The syndrome and its particular pattern of heredity are caused by a dynamic mutation, involving an unstable expansion of a trinucleotide (CGG) repeat at the 5' UTR of the FMR1 gene, located at Xq27.3. Expansion of this repeat region greater than 200 repeats leads to methylation-coupled silencing of the gene and absence of the Fragile X mental retardation protein (FMRP), causing the classical FXS. Individuals with expanded repeat lengths varying from 50 to 200 repeats do not exhibit the classical FXS phenotype, but are considered as fragile X premutation (PM) carriers. These premutation alleles may become unstable, only through maternal transmission, with further expansion in the next generations. For long-time, male and female premutation carriers were considered as asymptomatic. This view was, however, gradually challenged with the description and reports of different premutation-associated clinical phenotypes over the last decade.
Collapse
Affiliation(s)
- Hilde Van Esch
- Centre for Human Genetics, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Allen EG, Sherman S, Abramowitz A, Leslie M, Novak G, Rusin M, Scott E, Letz R. Examination of the effect of the polymorphic CGG repeat in the FMR1 gene on cognitive performance. Behav Genet 2005; 35:435-45. [PMID: 15971024 DOI: 10.1007/s10519-005-2792-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 01/10/2005] [Indexed: 01/26/2023]
Abstract
A CGG repeat sequence located in the 5' untranslated region of the FMR1 gene is polymorphic with respect to size and stability of the repeat during parent-offspring transmission. When expanded to over 200 repeats, the gene is hypermethylated and silenced, leading to fragile X syndrome (FXS). Recently, alleles with large unmethylated repeat tracts (premutations) have been associated with ovarian failure and a late-onset tremor/ataxia syndrome, symptoms unrelated to FXS. To further investigate the phenotype consequence of high repeat alleles, we have analyzed Wechsler adult intelligence scales-III (WAIS-III) measures on 66 males and 217 females with a wide range of repeat sizes. Among females only, we found that FMR1 repeat size and transcript level significantly explained approximately 4% of the variance in the Verbal IQ summary measure, suggesting that this polymorphism is one of many factors that influence variation in cognitive performance. Because of the well established association of increasing repeat size with decreasing age at menopause, we also investigated the reproductive stage and use of hormone replacement therapy (HRT) as a covariate to model verbal intelligence quotient (VIQ). We found that it explained an additional 5% of the variance in VIQ, but did not interact with FMR1 repeat and transcript level.
Collapse
|
38
|
Loesch DZ, Bui QM, Kelso W, Huggins RM, Slater H, Warne G, Bergman PB, Bergman P, Rodda C, Mitchell RJ, Prior M. Effect of Turner's syndrome and X-linked imprinting on cognitive status: analysis based on pedigree data. Brain Dev 2005; 27:494-503. [PMID: 16198207 DOI: 10.1016/j.braindev.2004.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 12/01/2004] [Accepted: 12/28/2004] [Indexed: 11/24/2022]
Abstract
The effects of a monosomy of either the maternally or paternally derived X chromosome in Turner's syndrome (TS) on general neurocognitive status and some executive abilities were assessed using the maximum likelihood estimators for pedigree data. This method increases the power of analysis by accounting for the effect of background heritable variation on a trait. The sample comprised 42 females with regular non-mosaic X monosomy and their non-affected relatives. Wechsler neurocognitive scores and several executive function tests' scores, including the Behaviour Dyscontrol Scale (BDS-2), the Wisconsin Card Sorting Test (WCST), and the Rey Complex Figure Test (RCFT), were considered in the analysis. Results showed a significant effect of TS on all Wechsler index and subtest scores, with greatest deficits observed in Arithmetic, Block Design, Object Assembly and Picture Arrangement, and on the total BDS, RCFT and WCST scores, regardless of parental origin of the single X-chromosome. Our data also showed a significantly higher effect of a paternally derived X chromosome in diminishing the performance on several Wechsler scores relevant to verbal skills, which might suggest X-linked imprinting loci relevant to these skills. Possible reasons for the inconsistency of the results concerning X-linked imprinting of cognitive loci using TS patients are discussed, and the relevance of pedigree analysis to future studies of this problem is emphasized.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychological Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mothersead PK, Conrad K, Hagerman RJ, Greco CM, Hessl D, Tassone F. GRAND ROUNDS: An Atypical Progressive Dementia in a Male Carrier of the Fragile X Premutation: An Example of Fragile X-Associated Tremor/Ataxia Syndrome. ACTA ACUST UNITED AC 2005; 12:169-78. [PMID: 16131344 DOI: 10.1207/s15324826an1203_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This case study describes a 65-year-old man initially diagnosed with an atypical rapidly progressive dementia who subsequently participated in a research project at the MIND Institute at the University of California-Davis, where he was diagnosed with a recently identified neurodegenerative syndrome, fragile X-associated tremor/ataxia syndrome (FXTAS). He was a carrier of the fragile X premutation and in later life developed tremor, gait ataxia, parkinsonism, and cognitive deficits that progressed very rapidly. This case study provides a detailed description of the individual's history, presenting symptoms, neuropsychological test results, and postmortem neuropathological analysis. Pathological findings showed diagnostic features of both FXTAS and Alzheimer's disease, which might help to explain the rapid progression of his dementia.
Collapse
Affiliation(s)
- Philip K Mothersead
- Neuropsychology & Rehabilitation, St. John's Health Center, Springfield, Missouri 65804-2263, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Mitchell RJ, Holden JJA, Zhang C, Curlis Y, Slater HR, Burgess T, Kirkby KC, Carmichael A, Heading KD, Loesch DZ. FMR1 alleles in Tasmania: a screening study of the special educational needs population. Clin Genet 2005; 67:38-46. [PMID: 15617547 DOI: 10.1111/j.1399-0004.2004.00344.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of fragile X mental retardation-1 (FMR1) allele categories, classified by the number of CGG repeats, in the population of Tasmania was investigated in 1253 males with special educational needs (SEN). The frequencies of these FMR1 categories were compared with those seen in controls as represented by 578 consecutive male births. The initial screening was based on polymerase chain reaction analysis of dried blood spots. Inconclusive results were verified by Southern analysis of a venous blood sample. The frequencies of common FMR1 alleles in both samples, and of grey zone alleles in the controls, were similar to those in other Caucasian populations. Consistent with earlier reports, we found some (although insignificant) increase of grey zone alleles in SEN subjects compared with controls. The frequencies of predisposing flanking haplotypes among grey zone males FMR1 alleles were similar to those seen in other Caucasian SEN samples. Contrary to expectation, given the normal frequency of grey zone alleles, no premutation (PM) or full mutation (FM) allele was detected in either sample, with only 15 fragile X families diagnosed through routine clinical admissions registered in Tasmania up to 2002. An explanation of this discrepancy could be that the C19th founders of Tasmania carried few PM or FM alleles. The eight to ten generations since white settlement of Tasmania has been insufficient time for susceptible grey zone alleles to evolve into the larger expansions.
Collapse
Affiliation(s)
- R J Mitchell
- Department of Genetics and Human Variation, School of Molecular Sciences, La Trobe University, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Skinner M, Hooper S, Hatton DD, Roberts J, Mirrett P, Schaaf J, Sullivan K, Wheeler A, Bailey DB. Mapping nonverbal IQ in young boys with fragile X syndrome. Am J Med Genet A 2005; 132A:25-32. [PMID: 15551333 DOI: 10.1002/ajmg.a.30353] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study examines the developmental changes in nonverbal intellectual functioning evident in males with fragile X syndrome (FXS) measured by the Leiter International Performance Scales-Revised (Leiter-R). The Leiter-R provides both IQ scores and associated growth scores which permit the examination of both age-based IQ scores and overall intellectual growth. Participants were 45 males with full mutation FXS and ranged in age from 4.0 to 13.8 years. Each child was assessed annually using the Leiter-R as part of a larger longitudinal battery for an average of 3.5 assessments per child and a range of 2-6 assessments, representing a total of 156 assessment occasions. Longitudinal analyzes of Leiter scores consisted primarily of hierarchical linear modeling, with the impact of chronological age, maternal education, fragile X mental retardation 1 protein (FMRP), autistic behaviors also being assessed. Findings revealed a significant linear decline in nonverbal IQ scores, with no effects of maternal education, autistic behaviors, or FMRP on mean level or rate of change in IQ scores over time. The decline slowed significantly around 8 years of age, but scores continued to decline into the 12th year of age. In contrast, a significant linear increase was observed in Leiter-R growth scores, which was negatively influenced by autistic behaviors. The rate of increase did not change over time, and neither mean level nor rate of increase was influenced by maternal education or FMRP levels. These findings suggest that declines in IQ are the result of steady, but suboptimal intellectual growth, rather than a true deterioration in overall intellectual functioning.
Collapse
Affiliation(s)
- Martie Skinner
- Social Development Research Group, University of Washington, Seattle, Washington 98115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hagerman PJ, Hagerman RJ. The fragile-X premutation: a maturing perspective. Am J Hum Genet 2004; 74:805-16. [PMID: 15052536 PMCID: PMC1181976 DOI: 10.1086/386296] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/11/2004] [Indexed: 11/03/2022] Open
Abstract
Carriers of premutation alleles (55-200 CGG repeats) of the fragile-X mental retardation 1 (FMR1) gene are often regarded as being clinically uninvolved. However, it is now apparent that such individuals can present with one (or more) of three distinct clinical disorders: mild cognitive and/or behavioral deficits on the fragile-X spectrum; premature ovarian failure; and a newly described, neurodegenerative disorder of older adult carriers, fragile-X-associated tremor/ataxia syndrome (FXTAS). Awareness of these clinical presentations is important for proper diagnosis and therapeutic intervention, not only among families with known cases of fragile-X syndrome but also more broadly for adults with tremor, gait ataxia, and parkinsonism who are seen in movement-disorders clinics.
Collapse
Affiliation(s)
- Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
43
|
Abstract
Data on the relationships between cognitive and physical phenotypes, and a deficit of fragile X mental retardation 1 (FMR1) gene-specific protein product, FMRP, are presented and discussed in context with earlier findings. The previously unpublished results obtained, using standard procedures of regression and correlations, showed highly significant associations in males between FMRP levels and the Wechsler summary and subtest scores and in females between these levels and the full-scale intelligence quotient (FSIQ), verbal and performance IQ, and some Wechsler subtest scores. The published results based on data from 144 extended families with fragile X, recruited from Australia and the United States within a collaborative NIH-supported project, were obtained using robust modification of maximum likelihood in pedigrees. The results indicated that processing speed, short-term memory, and the ability to control attention, especially in the context of regulating goal-directed behavior, may be primarily affected by the FMRP depletion. The effect of this depletion on physical phenotype was also demonstrated, especially on body and head height and extensibility of finger joints. It is recommended that further studies should rely on more accurate measures of FMRP levels, and use of larger samples, to overcome extensive variability in the data.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychological Science, La Trobe University, Melbourne, Australia.
| | | | | |
Collapse
|