1
|
Sabaie H, Ahangar NK, Ghafouri-Fard S, Taheri M, Rezazadeh M. Clinical and genetic features of PEHO and PEHO-Like syndromes: A scoping review. Biomed Pharmacother 2020; 131:110793. [PMID: 33152950 DOI: 10.1016/j.biopha.2020.110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 01/15/2023] Open
Abstract
Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is a genetic neurological condition characterized by extreme cerebellar atrophy. PEHO-Like syndrome is comparable to PEHO syndrome, with the exception that there is no typical neuro-radiologic or neuro-ophthalmic findings. PEHO spectrum disorders are highly clinically and genetically heterogeneous, and this has challenged their diagnosis. This scoping review aims to summarize and discuss common clinical and genetic features of these syndromes to help future researches. This study was performed according to a six-stage methodology structure and PRISMA guideline. A systematic search of seven databases was performed to find eligible publications prior to June 2020. Articles screening and data extraction were independently performed by two reviewers and quantitative and qualitative analyses were conducted. Thirty-eight articles were identified that fulfill the inclusion criteria. Cerebellar atrophy was the main clinical difference between the two groups but data on optic atrophy and infantile spasms/hypsarrhythmia were not consistent with the previously essential diagnostic criteria. Genetic analysis was performed in several studies, leading to identification of pathogenic variants in different genes that caused these conditions due to different mechanisms. Genetic studies could revolutionize the diagnosis process and our understanding of the etiology of this challenging group of patients by providing targeted sequencing panels and exome- or genome-scale studies in the future.
Collapse
Affiliation(s)
- Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Ekici A, Yılmaz İ, Görükmez O, Orcan CG, Dorum S. May PEHO Syndrome be a Clinical Entity Associated with Early Onset Encephalopathies? Ann Indian Acad Neurol 2020; 23:401-403. [PMID: 32606555 PMCID: PMC7313604 DOI: 10.4103/aian.aian_331_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Arzu Ekici
- Department of Pediatric Neurology, University of Health Sciences, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - İlyas Yılmaz
- Department of Pediatrics, University of Health Sciences, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Orhan Görükmez
- Department of Medical Genetics, University of Health Sciences, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Cengiz Gökhan Orcan
- Department of Radiology, University of Health Sciences, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sevil Dorum
- Department of Metabolism, University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
3
|
A patient with pontocerebellar hypoplasia type 6: Novel RARS2 mutations, comparison to previously published patients and clinical distinction from PEHO syndrome. Eur J Med Genet 2020; 63:103766. [DOI: 10.1016/j.ejmg.2019.103766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
|
4
|
Salpietro V, Zollo M, Vandrovcova J, Ryten M, Botia JA, Ferrucci V, Manole A, Efthymiou S, Al Mutairi F, Bertini E, Tartaglia M, Houlden H. The phenotypic and molecular spectrum of PEHO syndrome and PEHO-like disorders. Brain 2019; 140:e49. [PMID: 28899015 PMCID: PMC5806505 DOI: 10.1093/brain/awx155] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnologies "DMMBM", University of Naples "Federico II", Naples 80131, Italy.,CEINGE Biotecnologie Avanzate, Naples 80131, Italy.,European School of Molecular Medicine, SEMM, University of Milan, Italy
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Juan A Botia
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnologies "DMMBM", University of Naples "Federico II", Naples 80131, Italy.,CEINGE Biotecnologie Avanzate, Naples 80131, Italy.,European School of Molecular Medicine, SEMM, University of Milan, Italy
| | - Andreea Manole
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fuad Al Mutairi
- King Saud bin Abdulaziz University for Health Sciences, Department of Pediatrics, Division of Genetics, Riyadh 14611, Saudi Arabia
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico "Bambino Gesù", Rome 00146, Italy
| | - Marco Tartaglia
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico "Bambino Gesù", Rome 00146, Italy
| | | | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, UCL Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
5
|
A novel homozygous nonsense mutation in CCDC88A gene cause PEHO-like syndrome in consanguineous Saudi family. Neurol Sci 2018; 40:299-303. [DOI: 10.1007/s10072-018-3626-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
|
6
|
Progressive cerebello-cerebral atrophy and progressive encephalopathy with edema, hypsarrhythmia and optic atrophy may be allelic syndromes. Eur J Paediatr Neurol 2018; 22:1133-1138. [PMID: 30100179 DOI: 10.1016/j.ejpn.2018.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022]
Abstract
In 2003, a new syndrome was described in the Sephardi Jewish population, named progressive cerebello-cerebral atrophy (PCCA) based on the typical neuroradiological findings. Following the identification of the causal genes in 2010 and 2014, two types were defined: PCCA type 1 due to SEPSECS mutations and PCCA type 2 due to VPS53 mutations. Progressive encephalopathy with edema, hypsarrhythmia and optic atrophy (PEHO) was described in 1991 in Finland. The clinical and radiological phenotype resembles PCCA. The genetic background has been elusive for many years. Recently, mutations in multiple genes including SEPSECS have been described in patients with a PEHO-like syndrome. In 2007 two siblings of Moroccan-Jewish origin were diagnosed as having PEHO due to a severe developmental encephalopathy, limb and facial edema, intractable epilepsy, optic atrophy in one sibling and dysmorphic features. Six years ago an extensive workup, including whole exome sequencing, did not reveal the cause. Recently, a clinical reevaluation of the siblings suggested the possibility that they suffer from PCCA. A reanalysis of the exome data from 2014 revealed that the siblings indeed carried the two VPS53 mutations (exon 19 c.2084A>G p.(Gln695Arg) and c.1556 + 5G>A) and the parents were found to be carriers. The discovery that mutations in both VPS53 and SEPSECS can present with a PEHO-like phenotype, place PCCA and PEHO on the same clinical spectrum and suggest they may be allelic syndromes.
Collapse
|
7
|
Chitre M, Nahorski MS, Stouffer K, Dunning-Davies B, Houston H, Wakeling EL, Brady AF, Zuberi SM, Suri M, Parker APJ, Woods CG. PEHO syndrome: the endpoint of different genetic epilepsies. J Med Genet 2018; 55:803-813. [DOI: 10.1136/jmedgenet-2018-105288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023]
Abstract
BackgroundProgressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder.MethodChildren with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra–interfamilial phenotypic correlations and genotype–phenotype correlations when pathological mutations were identified.ResultsTwenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl’s DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes.ConclusionsWe found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities—and are phenotypic endpoints of many severe genetic encephalopathies.
Collapse
|
8
|
Anttonen AK, Laari A, Kousi M, Yang YJ, Jääskeläinen T, Somer M, Siintola E, Jakkula E, Muona M, Tegelberg S, Lönnqvist T, Pihko H, Valanne L, Paetau A, Lun MP, Hästbacka J, Kopra O, Joensuu T, Katsanis N, Lehtinen MK, Palvimo JJ, Lehesjoki AE. ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss. Brain 2017; 140:1267-1279. [PMID: 28335020 DOI: 10.1093/brain/awx040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/06/2017] [Indexed: 11/12/2022] Open
Abstract
Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.
Collapse
Affiliation(s)
- Anna-Kaisa Anttonen
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anni Laari
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC 27701, USA
| | - Yawei J Yang
- Division of Genetics, Howard Hughes Medical Institute.,Institute for Molecular Medicine Finland, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Lastenlinnantie 2, 00290 Helsinki, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland.,Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Mirja Somer
- The Norio Centre, The Rinnekoti Foundation, Kornetintie 8, 00380 Helsinki, Finland
| | - Eija Siintola
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland
| | - Eveliina Jakkula
- Institute for Molecular Medicine Finland, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko Muona
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Saara Tegelberg
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Lastenlinnantie 2, 00290 Helsinki, Finland
| | - Helena Pihko
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Lastenlinnantie 2, 00290 Helsinki, Finland
| | - Leena Valanne
- Department of Radiology, HUS Medical Imaging Center, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Melody P Lun
- Department of Pathology, Boston Children's Hospital, BCH 3108, 300 Longwood Ave., Boston, MA 02115, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Johanna Hästbacka
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 11, 00290 Helsinki, Finland
| | - Outi Kopra
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tarja Joensuu
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC 27701, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, BCH 3108, 300 Longwood Ave., Boston, MA 02115, USA
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Anna-Elina Lehesjoki
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| |
Collapse
|
9
|
Anttonen AK, Lehesjoki AE. Reply: The phenotypic and molecular spectrum of PEHO syndrome and PEHO-like disorders. Brain 2017; 140:e50. [DOI: 10.1093/brain/awx157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Gawlinski P, Posmyk R, Gambin T, Sielicka D, Chorazy M, Nowakowska B, Jhangiani SN, Muzny DM, Bekiesinska-Figatowska M, Bal J, Boerwinkle E, Gibbs RA, Lupski JR, Wiszniewski W. PEHO Syndrome May Represent Phenotypic Expansion at the Severe End of the Early-Onset Encephalopathies. Pediatr Neurol 2016; 60:83-7. [PMID: 27343026 PMCID: PMC5125779 DOI: 10.1016/j.pediatrneurol.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Progressive encephalopathy with edema, hypsarrhythmia and optic atrophy (PEHO) syndrome is a distinct neurodevelopmental disorder. Patients without optic nerve atrophy and brain imaging abnormalities but fulfilling other PEHO criteria are often described as a PEHO-like syndrome. The molecular bases of both clinically defined conditions remain unknown in spite of the widespread application of genome analyses in both clinic and research. METHODS We enrolled two patients with a prior diagnosis of PEHO and two individuals with PEHO-like syndrome. All four individuals subsequently underwent whole-exome sequencing and comprehensive genomic analysis. RESULTS We identified disease-causing mutations in known genes associated with neurodevelopmental disorders including GNAO1 and CDKL5 in two of four individuals. One patient with PEHO syndrome and a de novoGNAO1 mutation was found to have an additional de novo mutation in HESX1 that is associated with optic atrophy. CONCLUSIONS We hypothesize that PEHO and PEHO-like syndrome may represent a severe end of the spectrum of the early-onset encephalopathies and, in some instances, its complex phenotype may result from an aggregated effect of mutations at two loci.
Collapse
Affiliation(s)
- Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Danuta Sielicka
- Department of Pediatric Ophthalmology, Children's University Hospital, Bialystok, Poland
| | - Monika Chorazy
- Department of Neurology, Medical University Hospital, Bialystok, Poland
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | | | - Jerzy Bal
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas; Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, Texas
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, Houston, Texas
| | - Wojciech Wiszniewski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
11
|
Noh GJ, Jane Tavyev Asher Y, Graham JM. Clinical review of genetic epileptic encephalopathies. Eur J Med Genet 2012; 55:281-98. [PMID: 22342633 DOI: 10.1016/j.ejmg.2011.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022]
Abstract
Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered.
Collapse
Affiliation(s)
- Grace J Noh
- Clinical Genetics and Dysmorphology, Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
12
|
Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol 2011; 45:355-67. [PMID: 22114996 PMCID: PMC3397192 DOI: 10.1016/j.pediatrneurol.2011.08.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/15/2011] [Indexed: 10/15/2022]
Abstract
Infantile spasms constitute an age-dependent epilepsy, highly associated with cognitive impairment, autism, and movement disorders. Previous classification systems focused on a distinction between symptomatic and cryptogenic etiologies, and have not kept pace with recent discoveries of mutations in genes in key pathways of central nervous system development in patients with infantile spasms. Children with certain genetic syndromes are much likelier to manifest infantile spasms, and we review the literature to propose a genetic classification of these disorders. Children demonstrating genetic associations with infantile spasms also manifest phenotypes beyond epilepsy that may be explained by recent advances in the understanding of underlying biological mechanisms. Therefore we propose a biologic classification of genes highly associated with infantile spasms, and articulate models for infantile spasms pathogenesis based on those data. The two best described pathways of pathogenesis involve abnormalities in the gene regulatory network of gamma-aminobutyric acidergic forebrain development and abnormalities in molecules expressed at the synapse. These genetic and biologic classifications are flexible, and they should encourage much needed progress in syndrome recognition, clinical genetic testing, and the development of new therapies targeting specific pathways of pathogenesis.
Collapse
Affiliation(s)
- Alex R Paciorkowski
- Department of Neurology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
13
|
Millson A, LaGrave D, Willis MJ, Rowe LR, Lyon E, South ST. Chromosomal loss of 3q26.3-3q26.32, involving a partial neuroligin 1 deletion, identified by genomic microarray in a child with microcephaly, seizure disorder, and severe intellectual disability. Am J Med Genet A 2011; 158A:159-65. [DOI: 10.1002/ajmg.a.34349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022]
|
14
|
Alfadhel M, Yong SL, Lillquist Y, Langlois S. Precocious puberty in two girls with PEHO syndrome: a clinical feature not previously described. J Child Neurol 2011; 26:851-7. [PMID: 21596701 DOI: 10.1177/0883073810396582] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors present 2 girls with progressive encephalopathy, hypsarrhythmia, and optic atrophy syndrome. They describe a novel finding, precocious puberty, a feature not previously reported in this syndrome. The authors also present their clinical features and the results of investigations, including radiological findings, and compare the patients of this report to previously reported cases.
Collapse
Affiliation(s)
- Majid Alfadhel
- Department of Biochemical Diseases, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
15
|
Caraballo RH, Pozo AN, Gomez M, Semprino M. PEHO syndrome: a study of five Argentinian patients. Pediatr Neurol 2011; 44:259-64. [PMID: 21397166 DOI: 10.1016/j.pediatrneurol.2010.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/05/2010] [Accepted: 11/08/2010] [Indexed: 11/15/2022]
Abstract
We describe two familial and three nonfamilial cases from Argentina, examined between February 1, 1990-July 31, 2008, who met the diagnostic criteria of progressive encephalopathy, peripheral edema, hypsarrhythmia, and optic atrophy syndrome. All five children were products of normal gestation, although one was premature. Birth was uneventful in all patients. Two patients were twin brothers. During their first neurologic examination, between ages 2-6 months, patients presented with facial dysmorphia, poor visual contact, and generalized hypotonia with poor head control. Microcephaly and swelling of the dorsum of the hands and feet were evident. Hypsarrhythmia was observed in all patients (associated with epileptic spasms in four). Optic atrophy was evident in four cases. Magnetic resonance imaging indicated progressive cerebellum and brainstem atrophy in all cases. Toxoplasmosis, others, rubella, cytomegalovirus, herpes (TORCH), neurometabolic investigations, and karyotype studies produced normal results in all patients. Progressive encephalopathy, peripheral edema, hypsarrhythmia, and optic atrophy syndrome should be considered in infants with neonatal hypotonia, early onset of seizures (especially epileptic spasms), hypsarrhythmia, early loss of visual fixation, profound psychomotor retardation, typical dysmorphy, and progressive cerebellar and brainstem atrophy without a clear etiology. Autosomal recessive inheritance is suspected. Early diagnosis is important for adequate genetic counseling.
Collapse
Affiliation(s)
- Roberto Horacio Caraballo
- Department of Neuropediatrics, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
16
|
Sonmez G, Aydinöz S, Mutlu H, Ozturk E, Onur Sildiroglu H, Süleymanoglu S, Tunca Keskin A. Serial MRI in a child with PEHO syndrome. J Neuroradiol 2007; 34:281-3. [PMID: 17631962 DOI: 10.1016/j.neurad.2007.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
D'Arrigo S, Grazia BM, Faravelli F, Riva D, Pantaleoni C. Progressive encephalopathy with edema, hypsarrhythmia, and optic nerve atrophy (PEHO)-like syndrome: what diagnostic characteristics are defining? J Child Neurol 2005; 20:454-6. [PMID: 15968934 DOI: 10.1177/08830738050200051801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progressive encephalopathy with edema, hypsarrhythmia, and optic nerve atrophy (PEHO) syndrome is a rare, apparently autosomal recessive condition in which characteristic dysmorphic features are associated with subcutaneous edema, visual deficit, early arrest of psychomotor development, seizures, and cerebellar atrophy. A condition similar to PEHO syndrome, but without the neuroradiologic or ophthalmologic signs, is known as PEHO-like syndrome. We present the case of a child with PEHO-like syndrome and underline the need for a careful follow-up of these patients to identify signs and symptoms that can have a later onset, such as optic atrophy.
Collapse
Affiliation(s)
- Stefano D'Arrigo
- Department of Pediatric Neurology, Istituto Neurologico C. Besta, Milan, Italy
| | | | | | | | | |
Collapse
|
18
|
Klein A, Schmitt B, Boltshauser E. Progressive encephalopathy with edema, hypsarrhythmia and optic atrophy (PEHO) syndrome in a Swiss child. Eur J Paediatr Neurol 2004; 8:317-21. [PMID: 15542387 DOI: 10.1016/j.ejpn.2004.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
Progressive encephalopathy with edema, hypsarrhythmia and optic atrophy (PEHO) syndrome is a rare neurodegenerative syndrome first reported in 1991. Most patients described are of Finnish descent and very few patients have been reported in other countries. We report the first Swiss patient who fulfils the criteria of the PEHO syndrome. The course of the epilepsy is less severe than previously reported. Our patient developed a severe dystonic state after a febrile gastrointestinal infection, with a hypotonic state that may have been a dysregulation of brainstem origin. The diagnosis was made because of marked cerebellar atrophy in the repeated MRI. In patients with infantile spasms and severe developmental delay PEHO syndrome should be considered; it is not confined to Finnish heritage. Optic atrophy should be looked for and repeat MRI is indicated.
Collapse
Affiliation(s)
- Andrea Klein
- Department of Neurology, University Children's Hospital Zurich, Steinwiesstrasse 75, Zürich 8032, Switzerland.
| | | | | |
Collapse
|