1
|
Varadarajan S, Balaji TM, Raj AT, Gupta AA, Patil S, Alhazmi TH, Alaqi HAA, Al Omar NEM, Almutaher SABA, Jafer AA, Hedad IA. Genetic Mutations Associated with Pierre Robin Syndrome/Sequence: A Systematic Review. Mol Syndromol 2021; 12:69-86. [PMID: 34012376 DOI: 10.1159/000513217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023] Open
Abstract
Pierre Robin syndrome/sequence (PRS) is associated with a triad of symptoms that includes micrognathia, cleft palate, and glossoptosis that may lead to respiratory obstruction. The syndrome occurs in 2 forms: nonsyndromic PRS (nsPRS), and PRS associated with other syndromes (sPRS). Studies have shown varying genetic mutations associated with both nsPRS and sPRS. The present systematic review aims to provide a comprehensive collection of published literature reporting genetic mutations in PRS. Web of Science, PubMed, and Scopus were searched using the keywords: "Pierre Robin syndrome/sequence AND gene mutation." The search resulted in 208 articles, of which 93 were excluded as they were duplicates/irrelevant. The full-text assessment led to the further exclusion of 76 articles. From the remaining 39 articles included in the review, details of 324 cases were extracted. 56% of the cases were sPRS, and 22% of the cases were associated with other malformations and the remaining were nsPRS. Genetic mutations were noted in 30.9% of the 300 cases. Based on the review, SOX9 was found to be the most common gene associated with both nsPRS and sPRS. The gene mutation in sPRS was specific to the associated syndrome. Due to the lack of original studies, a quantitative analysis was not possible. Thus, future studies must focus on conducting large-scale cohort studies. Along with generating data on genetic mutation, future studies must also conduct pedigree analysis to assess potential familial inheritance, which in turn could provide valuable insights into the etiopathogenesis of PRS.
Collapse
Affiliation(s)
- Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | | | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Archana A Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Tariq Hassan Alhazmi
- Community Dental Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - Neda Essa M Al Omar
- Community Dental Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | - Ismaeel Abker Hedad
- Community Dental Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Gomez-Ospina N, Bernstein JA. Clinical, cytogenetic, and molecular outcomes in a series of 66 patients with Pierre Robin sequence and literature review: 22q11.2 deletion is less common than other chromosomal anomalies. Am J Med Genet A 2016; 170A:870-80. [PMID: 26756138 DOI: 10.1002/ajmg.a.37538] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023]
Abstract
Pierre Robin sequence (PRS) is an important craniofacial anomaly that can be seen as an isolated finding or manifestation of multiple syndromes. 22q11.2 deletion and Stickler syndrome are cited as the two most common conditions associated with PRS, but their frequencies are debated. We performed a retrospective study of 66 patients with PRS and reviewed their genetic testing, diagnoses, and clinical findings. The case series is complemented by a comprehensive literature review of the nature and frequency of genetic diagnosis in PRS. In our cohort 65% of patients had associated anomalies; of these, a genetic diagnosis was established in 56%. Stickler syndrome was the most common diagnosis, comprising approximately 11% of all cases, followed by Treacher Collins syndrome (9%). The frequency of 22q11.2 deletion was 1.5%. Chromosome arrays, performed for 72% of idiopathic PRS with associated anomalies, revealed two cases of 18q22→qter deletion, a region not previously reported in association with PRS. A review of the cytogenetic anomalies identified in this population supports an association between the 4q33-qter, 17q24.3, 2q33.1, and 11q23 chromosomal loci and PRS. We found a low frequency of 22q11.2 deletion in PRS, suggesting it is less commonly implicated in this malformation. Our data also indicate a higher frequency of cytogenetic anomalies in PRS patients with associated anomalies, and a potential new link with the 18q22→qter locus. The present findings underscore the utility of chromosomal microarrays in cases of PRS with associated anomalies and suggest that delaying testing for apparently isolated cases should be considered.
Collapse
|
3
|
Riley KN, Catalano LM, Bernat JA, Adams SD, Martin DM, Lalani SR, Patel A, Burnside RD, Innis JW, Rudd MK. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes. Am J Med Genet A 2015; 167A:2664-73. [PMID: 26227573 DOI: 10.1002/ajmg.a.37269] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 07/17/2015] [Indexed: 12/21/2022]
Abstract
Copy number variation (CNV) in the long arm of chromosome 2 has been implicated in developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD), congenital anomalies, and psychiatric disorders. Here we describe 14 new subjects with recurrent deletions and duplications of chromosome 2q11.2, 2q13, and 2q11.2-2q13. Though diverse phenotypes are associated with these CNVs, some common features have emerged. Subjects with 2q11.2 deletions often exhibit DD, speech delay, and attention deficit hyperactivity disorder (ADHD), whereas those with 2q11.2 duplications have DD, gastroesophageal reflux, and short stature. Congenital heart defects (CHDs), hypotonia, dysmorphic features, and abnormal head size are common in those with 2q13 deletions. In the 2q13 duplication cohort, we report dysmorphic features, DD, and abnormal head size. Two individuals with large duplications spanning 2q11.2-2q13 have dysmorphic features, hypotonia, and DD. This compilation of clinical features associated with 2q CNVs provides information that will be useful for healthcare providers and for families of affected children. However, the reduced penetrance and variable expressivity associated with these recurrent CNVs makes genetic counseling and prediction of outcomes challenging. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kacie N Riley
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia.,Department of Cytogenetics, Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, North Carolina
| | - Lisa M Catalano
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - John A Bernat
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Stacie D Adams
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Donna M Martin
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rachel D Burnside
- Department of Cytogenetics, Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, North Carolina
| | - Jeffrey W Innis
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Younkin SG, Scharpf RB, Schwender H, Parker MM, Scott AF, Marazita ML, Beaty TH, Ruczinski I. A genome-wide study of inherited deletions identified two regions associated with nonsyndromic isolated oral clefts. ACTA ACUST UNITED AC 2015; 103:276-83. [PMID: 25776870 DOI: 10.1002/bdra.23362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA copy number variants play an important part in the development of common birth defects such as oral clefts. Individual patients with multiple birth defects (including oral clefts) have been shown to carry small and large chromosomal deletions. METHODS We investigated the role of polymorphic copy number deletions by comparing transmission rates of deletions from parents to offspring in case-parent trios of European ancestry ascertained through a cleft proband with trios ascertained through a normal offspring. DNA copy numbers in trios were called using the joint hidden Markov model in the freely available PennCNV software. All statistical analyses were performed using Bioconductor tools in the open source environment R. RESULTS We identified a 67 kb region in the gene MGAM on chromosome 7q34, and a 206 kb region overlapping genes ADAM3A and ADAM5 on chromosome 8p11, where deletions are more frequently transmitted to cleft offspring than control offspring. CONCLUSIONS These genes or nearby regulatory elements may be involved in the etiology of oral clefts.
Collapse
Affiliation(s)
- Samuel G Younkin
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Benko S, Gordon CT, Amiel J, Lyonnet S. [Cis-ruptions of highly conserved non-coding genomic elements distant from the SOX9 gene in the Pierre Robin sequence]. Biol Aujourdhui 2011; 205:111-124. [PMID: 21831342 DOI: 10.1051/jbio/2011010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Indexed: 05/31/2023]
Abstract
Major developmental genes, exhibiting complex expression patterns, are often embedded within a genic desert particularly rich in regions, which though non-coding are highly conserved. The developmental expression of these genes in many areas requires coordinated regulation in time and space, which is orchestrated by some of these conserved non-coding regions, acting as transcriptional regulators. SOX9 is an essential gene for many developmental processes, such as chondrogenesis, migration and differentiation of neural crest cells and testis development. In agreement with these major expression areas, SOX9 haploinsufficiency, linked to alterations in coding sequence, leads to a polymorphic malformation syndrome - campomelic dysplasia - whose major symptoms are a bone anomaly, a Pierre Robin sequence, and a sexual differentiation anomaly (Disorder of Sex Development, DSD). SOX9 is located in a ~2.5 Mb gene desert extremely rich in conserved sequences. We have used the SOX9 locus and campomelic dysplasia as a model to show that one or several endophenotypes within a complex syndrome may arise from a tissue-specific deregulation of a major developmental gene transcription. Our work has focused on one of these endophenotypes, SPR, characterized by the triad micro- and/or retrognathy, glossoptosis and cleft palate. Here we report in detail how we identified alterations (translocations, deletions, point mutations) in non-coding regions, located far away (more than 1.2 Mb) upstream and downstream of SOX9, in clustered or sporadic SPR cases.
Collapse
Affiliation(s)
- Sabina Benko
- Département de génétique, Université Paris Descartes et Inserm U-781, Hôpital Necker-Enfants Malades, Paris Cedex, France
| | | | | | | |
Collapse
|
6
|
Hozyasz KK, Mostowska A, Szaflarska-Poplawska A, Lianeri M, Jagodzinski PP. Polymorphic variants of genes involved in homocysteine metabolism in celiac disease. Mol Biol Rep 2011; 39:3123-30. [PMID: 21688148 PMCID: PMC3271217 DOI: 10.1007/s11033-011-1077-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 06/10/2011] [Indexed: 12/31/2022]
Abstract
Celiac disease (CD) is a polygenic chronic enteropathy conferring an increased risk for various nutrient deficiency states. Hyperhomocysteinemia is a frequent finding in CD and may be related to the development of venous thrombosis, cardiovascular disease, and stroke in untreated CD patients. Recently, a possible excess in the frequency of the MTHFR c.677C>T (rs1801133) gene variant in CD patients was reported. The purpose of this study was to determine if there exist differences in the distribution of polymorphic variants of genes involved in homocysteine/methyl group metabolism between CD patients and the general population. A set of 10 gene polymorphisms (MTHFR rs1801133, MTR rs1805087, MTHFD1 rs2236225, MTRR rs1801394, CBS 844ins68, BHMT1 rs7356530 and rs3733890, BHMT2 rs526264 and rs625879, and TCN2 rs1801198) was tested in 134 patients with CD and 160 matched healthy controls. The frequency of the MTR rs1805087 GG genotype in CD patients was lower than in controls (0.01 and 0.06, respectively), although statistical significance was not achieved (P = 0.06). For the other analyzed polymorphisms, there was no evidence of difference in both allelic and genotypic distribution between cases and controls. The exhaustive Multifactor Dimensionality Reduction analysis revealed no combination of interactive polymorphisms predicting the incidence of CD. In contrast to the well-documented clinical observations of increased risks of vascular disease in patients with longstanding untreated CD, in our group of patients no significant association with CD was found for all tested polymorphic variants of genes involved in homocysteine metabolism. These findings should be replicated in studies with a larger sample size.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, 17a Kasprzaka Street, 01-211 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
7
|
Devillard F, Guinchat V, Moreno-De-Luca D, Tabet AC, Gruchy N, Guillem P, Nguyen Morel MA, Leporrier N, Leboyer M, Jouk PS, Lespinasse J, Betancur C. Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism. Am J Med Genet A 2010; 152A:2346-54. [PMID: 20684015 DOI: 10.1002/ajmg.a.33601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe a patient with autism and a paracentric inversion of chromosome 2q14.2q37.3, with a concurrent duplication of the proximal breakpoint at 2q14.1q14.2 and a deletion of the distal breakpoint at 2q37.3. The abnormality was derived from his mother with a balanced paracentric inversion. The inversion in the child appeared to be cytogenetically balanced but subtelomere FISH revealed a cryptic deletion at the 2q37.3 breakpoint. High-resolution single nucleotide polymorphism array confirmed the presence of a 3.5 Mb deletion that extended to the telomere, and showed a 4.2 Mb duplication at 2q14.1q14.2. FISH studies using a 2q14.2 probe showed that the duplicated segment was located at the telomeric end of chromosome 2q. This recombinant probably resulted from breakage of a dicentric chromosome. The child had autism, mental retardation, speech and language delay, hyperactivity, growth retardation with growth hormone deficiency, insulin-dependent diabetes, and mild facial dysmorphism. Most of these features have been previously described in individuals with simple terminal deletion of 2q37. Pure duplications of the proximal chromosome 2q are rare and no specific syndrome has been defined yet, so the contribution of the 2q14.1q14.2 duplication to the phenotype of the patient is unknown. These findings underscore the need to explore apparently balanced chromosomal rearrangements inherited from a phenotypically normal parent in subjects with autism and/or developmental delay. In addition, they provide further evidence indicating that chromosome 2q terminal deletions are among the most frequently reported cytogenetic abnormalities in individuals with autism.
Collapse
|
8
|
Duane syndrome in the setting of chromosomal duplications. Am J Ophthalmol 2010; 150:932-8. [PMID: 20933218 DOI: 10.1016/j.ajo.2010.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 01/24/2023]
Abstract
PURPOSE To describe the clinical findings in 3 patients with Duane syndrome and 3 different chromosomal duplications that may indicate the location of genes involved in the pathogenesis of this ocular motility disorder. DESIGN Observational case series. METHODS setting: Clinical practice. patient or study population: Three patients with Duane syndrome and chromosomal duplications from the clinical practice of 1 of the authors. observation procedures: Chart review and retrieval of clinical data and results of pertinent clinical tests, in this case chromosomal studies. main outcome measure: Reporting of details of clinical findings and duplicated chromosomal regions. RESULTS Two patients had unilateral type I Duane syndrome and 1 had bilateral type I Duane syndrome. Two had cognitive delay, and all 3 had other systemic abnormalities, including a variety of congenital malformations. The chromosomal abnormalities that were detected using microarray analysis were 2q13(RP11-20G1,RP11-461N11) × 3, 10q24.2q26.3(101,532,585-135,284, 169) × 3, 20q13.12(44,796,613-44,945, 818) × 3, and 22q11.1q11.22(RP11-701M12, RP11-71G19) × 3. CONCLUSIONS Patients with Duane syndrome and associated congenital malformations or developmental delay should be evaluated for the presence of underlying chromosomal duplications. The regions of chromosomes 2, 10, and 22 that we report may harbor genes involved in the pathogenesis of Duane syndrome.
Collapse
|
9
|
Conrad B, Antonarakis SE. Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease. Annu Rev Genomics Hum Genet 2007; 8:17-35. [PMID: 17386002 DOI: 10.1146/annurev.genom.8.021307.110233] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene duplication is one of the key factors driving genetic innovation, i.e., producing novel genetic variants. Although the contribution of whole-genome and segmental duplications to phenotypic diversity across species is widely appreciated, the phenotypic spectrum and potential pathogenicity of small-scale duplications in individual genomes are less well explored. This review discusses the nature of small-scale duplications and the phenotypes produced by such duplications. Phenotypic variation and disease phenotypes induced by duplications are more diverse and widespread than previously anticipated, and duplications are a major class of disease-related genomic variation. Pathogenic duplications particularly involve dosage-sensitive genes with both similar and dissimilar over- and underexpression phenotypes, and genes encoding proteins with a propensity to aggregate. Phenotypes related to human-specific copy number variation in genes regulating environmental responses and immunity are increasingly recognized. Small genomic duplications containing defense-related genes also contribute to complex common phenotypes.
Collapse
Affiliation(s)
- Bernard Conrad
- Department of Genetic Medicine & Development, University of Geneva Medical School and Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
10
|
Murray SA, Oram KF, Gridley T. Multiple functions of Snail family genes during palate development in mice. Development 2007; 134:1789-97. [PMID: 17376812 DOI: 10.1242/dev.02837] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Palate development requires precise regulation of gene expression changes, morphogenetic movements and alterations in cell physiology. Defects in any of these processes can result in cleft palate, a common human birth defect. The Snail gene family encodes transcriptional repressors that play essential roles in the growth and patterning of vertebrate embryos. Here we report the functions of Snail (Snai1) and Slug (Snai2) genes during palate development in mice. Snai2(-/-) mice exhibit cleft palate, which is completely penetrant on a Snai1 heterozygous genetic background. Cleft palate in Snai1(+/-) Snai2(-/-) embryos is due to a failure of the elevated palatal shelves to fuse. Furthermore, while tissue-specific deletion of the Snai1 gene in neural crest cells does not cause any obvious defects, neural-crest-specific Snai1 deletion on a Snai2(-/-) genetic background results in multiple craniofacial defects, including a cleft palate phenotype distinct from that observed in Snai1(+/-) Snai2(-/-) embryos. In embryos with neural-crest-specific Snai1 deletion on a Snai2(-/-) background, palatal clefting results from a failure of Meckel's cartilage to extend the mandible and thereby allow the palatal shelves to elevate, defects similar to those seen in the Pierre Robin Sequence in humans.
Collapse
|