1
|
Boileau A, Brierre T, Castel-Lacanal É, Soulié M, Gamé X. Lower urinary tract involvement in Ehlers-Danlos and Joint Hypermobility syndromes: Review of the literature. THE FRENCH JOURNAL OF UROLOGY 2024; 34:102698. [PMID: 39033997 DOI: 10.1016/j.fjurol.2024.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Ehlers-Danlos syndrome (EDS) and Joint Hypermobility syndrome (JHS) are still poorly understood, with a prevalence of 1/5000 for EDS and 1/500 for JHS. They are characterized by multisystem involvement. Urological involvement has been little studied. The aim was to carry out a review of the literature on the urological involvement of EDS and JHS. METHOD A review of the literature was carried out using the following databases: Pubmed, Canadian Hospitals and EMBASE. Search terms were "Ehlers-Danlos" or "Joint Hypermobility" associated with "Urology", "Bladder", "Pelvic Organ Prolapse", "Urinary Retention", "Leak", "Leakage", "Urinary Incontinence", "Urinary Tract Infection" and "Urdodynamic", no filters were added. RESULTS Seventy-three articles were included for a total of 259 found. The prevalence of urinary incontinence in EDS is estimated at 50-60%, and that of pelvic organ prolapse (POP) at 29-75%. Bladder diverticula are also frequently reported. For JHS, the prevalence of urinary incontinence is estimated between 40 and 73%, that of POP increased with 73% of stage greater than 2, g-JHS patients are almost 3 times more affected by prolapses (OR=2.37) which seem more severe. Patients with vesicoureteral reflux, most often severe, are more affected by joint hypermobility (OR=2.79). Few studies have been carried out on urological assessment and treatment modalities. CONCLUSION EDS patients often have urinary incontinence, pelvic organ prolapse or bladder diverticula. JHS patients frequently have urinary incontinence, pelvic organ prolapse and vesicoureteral reflux.
Collapse
Affiliation(s)
- Adrien Boileau
- Department of Urology, Renal Transplantation and Andrology, CHU de Rangueil, université Paul-Sabatier, Toulouse, France.
| | - Thibaut Brierre
- Department of Urology, Renal Transplantation and Andrology, CHU de Rangueil, université Paul-Sabatier, Toulouse, France
| | - Évelyne Castel-Lacanal
- Inserm, UPS, Physical Medicine and Rehabilitation Department and ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Toulouse University Hospital, Toulouse, France
| | - Michel Soulié
- Department of Urology, Renal Transplantation and Andrology, CHU de Rangueil, université Paul-Sabatier, Toulouse, France
| | - Xavier Gamé
- Department of Urology, Renal Transplantation and Andrology, CHU de Rangueil, université Paul-Sabatier, Toulouse, France
| |
Collapse
|
2
|
Uehara M, Takahashi J, Kosho T. Spinal Deformity in Ehlers-Danlos Syndrome: Focus on Musculocontractural Type. Genes (Basel) 2023; 14:1173. [PMID: 37372353 DOI: 10.3390/genes14061173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Spinal deformity in Ehlers-Danlos syndrome (EDS) is an important symptom that can lead to trunk balance deterioration, respiratory dysfunction, and digestive disorders as the deformity progresses, thereby reducing a patient's quality of life and activities of daily living. The severity of the deformity varies widely, with treatment depending on the extent and the presence of associated complications. The present review addressed the current state of clinical research and treatment of spinal deformities in EDS with a specific focus on the musculocontractural type. Further studies are needed to better understand the underlying mechanisms of spinal deformity in EDS.
Collapse
Affiliation(s)
- Masashi Uehara
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Nagano, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
- Division of Instrumental Analysis, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
3
|
Yue F, Era T, Yamaguchi T, Kosho T. Pathophysiological Investigation of Skeletal Deformities of Musculocontractural Ehlers–Danlos Syndrome Using Induced Pluripotent Stem Cells. Genes (Basel) 2023; 14:genes14030730. [PMID: 36981001 PMCID: PMC10048181 DOI: 10.3390/genes14030730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Musculocontractural Ehlers–Danlos syndrome caused by mutations in the carbohydrate sulfotransferase 14 gene (mcEDS-CHST14) is a heritable connective tissue disorder characterized by multiple congenital malformations and progressive connective tissue fragility-related manifestations in the cutaneous, skeletal, cardiovascular, visceral, and ocular systems. Progressive skeletal deformities are among the most frequent and serious complications affecting the quality of life and activities of daily living in patients. After establishing induced pluripotent stem cells (iPSCs) from cultured skin fibroblasts of three patients with mcEDS-CHST14, we generated a patient iPSC-based human osteogenesis model and performed an in vitro assessment of the phenotype and pathophysiology of skeletal deformities. Patient-derived iPSCs presented with remarkable downregulation of osteogenic-specific gene expression, less alizarin red staining, and reduced calcium deposition compared with wild-type iPSCs at each stage of osteogenic differentiation, including osteoprogenitor cells, osteoblasts, and osteocytes. These findings indicated that osteogenesis was impaired in mcEDS-CHST14 iPSCs. Moreover, the decrease in decorin (DCN) expression and increase in collagen (COL12A1) expression in patient-derived iPSCs elucidated the contribution of CHST14 dysfunction to skeletal deformities in mcEDS-CHST14. In conclusion, this disease-in-a-dish model provides new insight into the pathophysiology of EDS and may have the potential for personalized gene or drug therapy.
Collapse
Affiliation(s)
- Fengming Yue
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Shinshu University Interdisciplinary Cluster for Cutting Edge Research, Institute for Biomedical Sciences, Matsumoto 390-8621, Japan
- Correspondence: (F.Y.); (T.K.); Tel.: +81-263-37-2590 (F.Y.); +81-263-37-2618 (T.K.)
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomomi Yamaguchi
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan
- Correspondence: (F.Y.); (T.K.); Tel.: +81-263-37-2590 (F.Y.); +81-263-37-2618 (T.K.)
| |
Collapse
|
4
|
Mizumoto S, Yamada S. Histories of Dermatan Sulfate Epimerase and Dermatan 4- O-Sulfotransferase from Discovery of Their Enzymes and Genes to Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2023; 14:509. [PMID: 36833436 PMCID: PMC9957132 DOI: 10.3390/genes14020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Dermatan sulfate (DS) and its proteoglycans are essential for the assembly of the extracellular matrix and cell signaling. Various transporters and biosynthetic enzymes for nucleotide sugars, glycosyltransferases, epimerase, and sulfotransferases, are involved in the biosynthesis of DS. Among these enzymes, dermatan sulfate epimerase (DSE) and dermatan 4-O-sulfotranserase (D4ST) are rate-limiting factors of DS biosynthesis. Pathogenic variants in human genes encoding DSE and D4ST cause the musculocontractural type of Ehlers-Danlos syndrome, characterized by tissue fragility, joint hypermobility, and skin hyperextensibility. DS-deficient mice exhibit perinatal lethality, myopathy-related phenotypes, thoracic kyphosis, vascular abnormalities, and skin fragility. These findings indicate that DS is essential for tissue development as well as homeostasis. This review focuses on the histories of DSE as well as D4ST, and their knockout mice as well as human congenital disorders.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | |
Collapse
|
5
|
Isobe F, Hayashi M, Kobayashi R, Nakamura M, Kosho T, Takahashi J. Clinical Presentation and Characteristics of the Upper Extremity in Patients with Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2022; 13:1978. [PMID: 36360214 PMCID: PMC9689626 DOI: 10.3390/genes13111978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Musculocontractural Ehlers-Danlos syndrome (mcEDS) is a subtype of EDS caused by defective dermatan sulfate biosynthesis, characterized by multiple malformations (craniofacial features, ocular and visceral malformations) and progressive cutaneous, skeletal, vascular, and visceral fragility-related manifestations. Repeated dislocations and deformities of the joints due to joint relaxation are observed, causing serious damage to the musculoskeletal system of the whole body; however, the motor function of the upper limbs and the morphology of the bone joints have not been systematically investigated. In this study, we present a detailed and comprehensive report on upper limb lesions of 13 patients with a mean age at the first visit of 21 years. Twelve patients (92.3%) had a history of dislocation. Eleven patients (84.6%) had shoulder dislocations, and two patients (15.4%) had elbow dislocations. Four patients (30.8%) had elbow osteoarthritis, and three patients (23.1%) had distal radioulnar joint (DRUJ) osteoarthritis. The phalanges and metacarpals are thin, and the ratio of medullary cavity of the metacarpal bone decreases with age. As bone and joint deformity progresses, patients with mcEDS should be recommended to receive regular follow-up, including radiology. The present findings suggest an important role for dermatan sulfate in the maintenance of the skeletal system.
Collapse
Affiliation(s)
- Fumihiro Isobe
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Masanori Hayashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Rena Kobayashi
- Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Manami Nakamura
- Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan
- Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| |
Collapse
|
6
|
The Ehlers–Danlos Syndromes against the Backdrop of Inborn Errors of Metabolism. Genes (Basel) 2022; 13:genes13020265. [PMID: 35205310 PMCID: PMC8872221 DOI: 10.3390/genes13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The Ehlers–Danlos syndromes are a group of multisystemic heritable connective tissue disorders with clinical presentations that range from multiple congenital malformations, over adolescent-onset debilitating or even life-threatening complications of connective tissue fragility, to mild conditions that remain undiagnosed in adulthood. To date, thirteen different EDS types have been recognized, stemming from genetic defects in 20 different genes. While initial biochemical and molecular analyses mainly discovered defects in genes coding for the fibrillar collagens type I, III and V or their modifying enzymes, recent discoveries have linked EDS to defects in non-collagenous matrix glycoproteins, in proteoglycan biosynthesis and in the complement pathway. This genetic heterogeneity explains the important clinical heterogeneity among and within the different EDS types. Generalized joint hypermobility and skin hyperextensibility with cutaneous fragility, atrophic scarring and easy bruising are defining manifestations of EDS; however, other signs and symptoms of connective tissue fragility, such as complications of vascular and internal organ fragility, orocraniofacial abnormalities, neuromuscular involvement and ophthalmological complications are variably present in the different types of EDS. These features may help to differentiate between the different EDS types but also evoke a wide differential diagnosis, including different inborn errors of metabolism. In this narrative review, we will discuss the clinical presentation of EDS within the context of inborn errors of metabolism, give a brief overview of their underlying genetic defects and pathophysiological mechanisms and provide a guide for the diagnostic approach.
Collapse
|
7
|
Ehlers Danlos Syndrome with Glycosaminoglycan Abnormalities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:235-249. [PMID: 34807422 DOI: 10.1007/978-3-030-80614-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a genetically and clinically heterogeneous group of connective tissue disorders that typically present with skin hyperextensibility, joint hypermobility, and tissue fragility. The major cause of EDS appears to be impaired biosynthesis and enzymatic modification of collagen. In this chapter, we discuss two types of EDS that are associated with proteoglycan abnormalities: spondylodysplastic EDS and musculocontractural EDS. Spondylodysplastic EDS is caused by pathogenic variants in B4GALT7 or B3GALT6, both of which encode key enzymes that initiate glycosaminoglycan synthesis. Musculocontractural EDS is caused by mutations in CHST14 or DSE, both of which encode enzymes responsible for the post-translational biosynthesis of dermatan sulfate. The clinical and molecular characteristics of both types of EDS are described in this chapter.
Collapse
|
8
|
Minatogawa M, Unzaki A, Morisaki H, Syx D, Sonoda T, Janecke AR, Slavotinek A, Voermans NC, Lacassie Y, Mendoza-Londono R, Wierenga KJ, Jayakar P, Gahl WA, Tifft CJ, Figuera LE, Hilhorst-Hofstee Y, Maugeri A, Ishikawa K, Kobayashi T, Aoki Y, Ohura T, Kawame H, Kono M, Mochida K, Tokorodani C, Kikkawa K, Morisaki T, Kobayashi T, Nakane T, Kubo A, Ranells JD, Migita O, Sobey G, Kaur A, Ishikawa M, Yamaguchi T, Matsumoto N, Malfait F, Miyake N, Kosho T. Clinical and molecular features of 66 patients with musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS- CHST14). J Med Genet 2021; 59:865-877. [PMID: 34815299 PMCID: PMC9411915 DOI: 10.1136/jmedgenet-2020-107623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.
Collapse
Affiliation(s)
- Mari Minatogawa
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Ai Unzaki
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Problem-Solving Oriented Training Program for Advanced Medical Personnel: NGSD (Next Generation Super Doctor) Project, Matsumoto, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tohru Sonoda
- Department of Occupational Therapy, School of Health and Science, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Yves Lacassie
- Department of Pediatrics, Louisiana State University Health Science Center, New Orleans, LA, USA.,Division of Clinical Genetics and Department of Genetics, Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Klaas J Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - William A Gahl
- Undiagnosed Diseases Program, Office of the NIH Director, National Institutes of Health, Bethesda, MD, USA.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- Undiagnosed Diseases Program, Office of the NIH Director, National Institutes of Health, Bethesda, MD, USA.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luis E Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | | - Alessandra Maugeri
- Department of Clinical Genetics, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Ken Ishikawa
- Department of Pediatrics, Iwate Medical University, Morioka, Japan
| | - Tomoko Kobayashi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.,Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Senda, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Toshihiro Ohura
- Division of Clinical Laboratory, Sendai City Hospital, Sendai, Japan
| | - Hiroshi Kawame
- Division of Genomic Medicine Support and Genetic Counseling, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Miyagi Children's Hospital, Sendai, Japan.,Division of Clinical Genetics, Jikei University Hospital, Tokyo, Japan
| | - Michihiro Kono
- Department of Dermatology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan.,Department of Dermatology and Plastic Surgery, Akita University Graduate School of Medicine School of Medicine, Akita, Akita, Japan
| | - Kosuke Mochida
- Department of Dermatology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Chiho Tokorodani
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Kiyoshi Kikkawa
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Internal Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Takaya Nakane
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Ohsuke Migita
- Department of Clinical Genetics, St. Marianna University, School of Medicine, Kawasaki, Japan
| | - Glenda Sobey
- EDS National Diagnostic Service, Sheffield Children's Hospital, Sheffield, UK
| | - Anupriya Kaur
- Department of Pediatrics (Genetics Division), Advanced Pediatric Cente, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Masumi Ishikawa
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Tomomi Yamaguchi
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan .,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| |
Collapse
|
9
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
10
|
Uehara M, Oba H, Hatakenaka T, Ikegami S, Kuraishi S, Takizawa T, Munakata R, Mimura T, Yamaguchi T, Kosho T, Takahashi J. Posterior Spinal Fusion for Severe Spinal Deformities in Musculocontractural Ehlers-Danlos Syndrome: Detailed Observation of a Novel Case and Review of 2 Reported Cases. World Neurosurg 2020; 143:454-461. [PMID: 32822956 DOI: 10.1016/j.wneu.2020.08.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS-CHST14) is a recently delineated connective tissue disorder characterized by multisystem congenital malformations and progressive connective tissue fragility-related manifestations. With only 2 cases of mcEDS-CHST14 containing precise information on surgical spinal correction being reported to date, there remains no consensus on treatment standards. This study describes the detailed clinical and radiologic outcomes of the third known patient with mcEDS-CHST14 who successfully underwent surgery for severe kyphoscoliosis. CASE DESCRIPTION The patient was a 19-year-old girl with mcEDS-CHST14 who suffered from low back pain and decreased daily activities caused by progressive kyphoscoliosis. She underwent posterior spinal fusion with an all-pedicle screw construct from T4 to L4 for a preoperative main curve Cobb angle of 69 degrees and kyphotic angle of 27 degrees. Postoperative Cobb angle of the main curve and kyphotic angle were 26 and 6 degrees, respectively. Although sufficient correction was achieved without disseminated intravascular coagulation or other serious sequelae, a large amount of blood (2600 g) was lost due to tissue fragility. Her low back pain was decreased at 1 year after surgery. CONCLUSIONS On the basis of the present and 2 earlier reported cases, posterior spinal fusion may be a reasonable surgical option for severe progressive spinal deformities in patients with mcEDS-CHST14. However, careful attention is needed for possible massive blood loss from tissue fragility.
Collapse
Affiliation(s)
- Masashi Uehara
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan.
| | - Hiroki Oba
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Terue Hatakenaka
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Shota Ikegami
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Shugo Kuraishi
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Takashi Takizawa
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Ryo Munakata
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Tetsuhiko Mimura
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| | - Tomomi Yamaguchi
- Department of Medical Genetics, Shinshu University Hospital, Matsumoto, Japan; Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University Hospital, Matsumoto, Japan; Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan; Research Center for Supports to Advanced Science, Shinshu University Hospital, Matsumoto, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
11
|
Hirose T, Mizumoto S, Hashimoto A, Takahashi Y, Yoshizawa T, Nitahara-Kasahara Y, Takahashi N, Nakayama J, Takehana K, Okada T, Nomura Y, Yamada S, Kosho T, Watanabe T. Systematic investigation of the skin in Chst14-/- mice: A model for skin fragility in musculocontractural Ehlers-Danlos syndrome caused by CHST14 variants (mcEDS-CHST14). Glycobiology 2020; 31:137-150. [PMID: 32601684 DOI: 10.1093/glycob/cwaa058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023] Open
Abstract
Loss-of-function variants in CHST14 cause a dermatan 4-O-sulfotransferase deficiency named musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), resulting in complete depletion of the dermatan sulfate moiety of decorin glycosaminoglycan (GAG) chains, which is replaced by chondroitin sulfate. Recently, we uncovered structural alteration of GAG chains in the skin of patients with mcEDS-CHST14. Here, we conducted the first systematic investigation of Chst14 gene-deleted homozygote (Chst14-/-) mice. We used skin samples of wild-type (Chst14+/+) and Chst14-/- mice. Mechanical fragility of the skin was measured with a tensile test. Pathology was observed using light microscopy, decorin immunohistochemistry and electron microscopy (EM) including cupromeronic blue (CB) staining. Quantification of chondroitin sulfate and dermatan sulfate was performed using enzymatic digestion followed by anion-exchange HPLC. In Chst14-/- mice, skin tensile strength was significantly decreased compared with that in Chst14+/+ mice. EM showed that collagen fibrils were oriented in various directions to form disorganized collagen fibers in the reticular layer. Through EM-based CB staining, rod-shaped linear GAG chains were found to be attached at one end to collagen fibrils and protruded outside of the fibrils, in contrast to them being round and wrapping the collagen fibrils in Chst14+/+ mice. A very low level of dermatan sulfate disaccharides was detected in the skin of Chst14-/- mice by anion-exchange chromatography. Chst14-/- mice, exhibiting similar abnormalities in the GAG structure of decorin and collagen networks in the skin, could be a reasonable model for skin fragility of patients with mcEDS-CHST14, shedding light on the role of dermatan sulfate in maintaining skin strength.
Collapse
Affiliation(s)
- Takuya Hirose
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Ayana Hashimoto
- Department of Applied Protein Chemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Yuki Takahashi
- Department of Medical Genetics, Shinshu University Schoolof Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo 113-0022, Japan
| | - Naoki Takahashi
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Kazushige Takehana
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo 113-0022, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshihiro Nomura
- Department of Applied Protein Chemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University Schoolof Medicine, Matsumoto, Nagano 390-8621, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
12
|
Kosho T, Mizumoto S, Watanabe T, Yoshizawa T, Miyake N, Yamada S. Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2019; 11:genes11010043. [PMID: 31905796 PMCID: PMC7017038 DOI: 10.3390/genes11010043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Musculocontractural Ehlers–Danlos Syndome (mcEDS) is a type of EDS caused by biallelic pathogenic variants in the gene for carbohydrate sulfotransferase 14/dermatan 4-O-sulfotransferase 1 (CHST14/D4ST1, mcEDS-CHST14), or in the gene for dermatan sulfate epimerase (DSE, mcEDS-DSE). Thus far, 41 patients from 28 families with mcEDS-CHST14 and five patients from four families with mcEDS-DSE have been described in the literature. Clinical features comprise multisystem congenital malformations and progressive connective tissue fragility-related manifestations. This review outlines recent advances in understanding the pathophysiology of mcEDS. Pathogenic variants in CHST14 or DSE lead to reduced activities of relevant enzymes, resulting in a negligible amount of dermatan sulfate (DS) and an excessive amount of chondroitin sulfate. Connective tissue fragility is presumably attributable to a compositional change in the glycosaminoglycan chains of decorin, a major DS-proteoglycan in the skin that contributes to collagen fibril assembly. Collagen fibrils in affected skin are dispersed in the papillary to reticular dermis, whereas those in normal skin are regularly and tightly assembled. Glycosaminoglycan chains are linear in affected skin, stretching from the outer surface of collagen fibrils to adjacent fibrils; glycosaminoglycan chains are curved in normal skin, maintaining close contact with attached collagen fibrils. Homozygous (Chst14−/−) mice have been shown perinatal lethality, shorter fetal length and vessel-related placental abnormalities. Milder phenotypes in mcEDS-DSE might be related to a smaller fraction of decorin DS, potentially through residual DSE activity or compensation by DSE2 activity. These findings suggest critical roles of DS and DS-proteoglycans in the multisystem development and maintenance of connective tissues, and provide fundamental evidence to support future etiology-based therapies.
Collapse
Affiliation(s)
- Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan
- Research Center for Supports to Advanced Science, Matsumoto 390-8621, Japan
- Correspondence: ; Tel.: +81-263-37-2618; Fax: +81-263-37-2619
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.); (S.Y.)
| | - Takafumi Watanabe
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan;
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.); (S.Y.)
| |
Collapse
|
13
|
Mizumoto S. [Hereditary Skeletal and Skin Disorders Caused by Defects in the Biosynthesis of Chondroitin/Dermatan Sulfate, and Molecular Mechanisms of Pulmonary Metastasis]. YAKUGAKU ZASSHI 2019; 139:1495-1500. [PMID: 31787635 DOI: 10.1248/yakushi.19-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles of chondroitin sulfate (CS) and dermatan sulfate (DS) have been demonstrated in various biological events such as the construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, and growth factors. Human genetic diseases, including skeletal abnormalities, connective tissue diseases, and heart defects, were reported to be caused by mutations in the genes encoding glycosyltransferases, epimerases, and sulfotransferases that are responsible for the biosynthesis of CS and DS. Glycobiological approaches revealed that mutations in CS- and DS-biosynthetic enzymes led to reductions in their enzymatic activities and in the levels of CS and DS. Furthermore, CS at the surface of tumor cells plays a key role in pulmonary metastasis. A receptor for advanced glycation end-products (RAGE) was predominantly expressed in the lung, and was identified as a functional receptor for CS chains. CS and anti-RAGE antibodies inhibited the pulmonary metastasis of not only Lewis lung carcinoma but also B16 melanoma cells. Hence, RAGE and CS are potential targets of drug discovery for pulmonary metastasis and a number of other pathological conditions involving RAGE in the pathogenetic mechanism. This review provides an overview of glycobiological studies on characterized genetic disorders caused by the impaired biosynthesis of CS, as well as DS, and on the pulmonary metastasis of Lewis lung carcinoma cells involving CS and RAGE.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
14
|
Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochim Biophys Acta Gen Subj 2019; 1863:623-631. [DOI: 10.1016/j.bbagen.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
|
15
|
Uehara M, Kosho T, Yamamoto N, Takahashi HE, Shimakura T, Nakayama J, Kato H, Takahashi J. Spinal manifestations in 12 patients with musculocontractural Ehlers-Danlos syndrome caused by CHST14/D4ST1 deficiency (mcEDS-CHST14). Am J Med Genet A 2018; 176:2331-2341. [PMID: 30195269 DOI: 10.1002/ajmg.a.40507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/01/2023]
Abstract
Musculocontractural Ehlers-Danlos syndrome caused by mutations in CHST14 (mcEDS-CHST14) is a recently delineated disorder, characterized by craniofacial, skeletal, visceral, and ocular malformations; and progressive cutaneous, skeletal, vascular, and visceral fragility-related manifestations. Spinal lesions, though one of the most serious complications, have not been investigated systematically. In this study, we report detailed and comprehensive information about spinal lesions of 12 patients with a mean age at the first visit of 13.4 years. Eight patients (66.7%) had scoliosis with a Cobb angle ≥10°, including one with severe scoliosis with a Cobb angle ≥45°. Five patients (41.7%) had kyphosis at the thoracolumbar junction with a kyphotic angle ≥20°. Three patients (25%) developed severe thoracolumbar kyphosis with a kyphotic angle ≥50° accompanied by thoracic lordosis with a wedge-like vertebral deformity and anterior vertebral osteophyte at the thoracolumbar junction, and two of them underwent surgical correction: complicated by fistula formation in one and performed safely and effectively through two-staged operation in the other. Six patients (50.0%) had cervical kyphosis, all of whom except one had kyphosis ≥20° at the thoracolumbar level. Two patients (16.7%) had atlantoaxial subluxation, and 10 patients (83.3%) had cervical vertebral malformations. Patients with mcEDS-CHST14 are susceptible to develop scoliosis, thoracolumbar kyphosis, and cervical kyphosis; and are recommended to have regular surveillance including total spine radiology. The present findings also suggest the critical role of dermatan sulfate in the development and maintenance of the spine.
Collapse
Affiliation(s)
- Masashi Uehara
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
16
|
Mizumoto S. Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1812.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
17
|
Brady AF, Demirdas S, Fournel-Gigleux S, Ghali N, Giunta C, Kapferer-Seebacher I, Kosho T, Mendoza-Londono R, Pope MF, Rohrbach M, Van Damme T, Vandersteen A, van Mourik C, Voermans N, Zschocke J, Malfait F. The Ehlers-Danlos syndromes, rare types. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:70-115. [PMID: 28306225 DOI: 10.1002/ajmg.c.31550] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ehlers-Danlos syndromes comprise a clinically and genetically heterogeneous group of heritable connective tissue disorders, which are characterized by joint hypermobility, skin hyperextensibility, and tissue friability. In the Villefranche Nosology, six subtypes were recognized: The classical, hypermobile, vascular, kyphoscoliotic, arthrochalasis, and dermatosparaxis subtypes of EDS. Except for the hypermobile subtype, defects had been identified in fibrillar collagens or in collagen-modifying enzymes. Since 1997, a whole spectrum of novel, clinically overlapping, rare EDS-variants have been delineated and genetic defects have been identified in an array of other extracellular matrix genes. Advances in molecular testing have made it possible to now identify the causative mutation for many patients presenting these phenotypes. The aim of this literature review is to summarize the current knowledge on the rare EDS subtypes and highlight areas for future research. © 2017 Wiley Periodicals, Inc.
Collapse
|
18
|
Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders. Pharmaceuticals (Basel) 2017; 10:ph10020034. [PMID: 28346368 PMCID: PMC5490391 DOI: 10.3390/ph10020034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs) have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.
Collapse
|
19
|
Mizumoto S, Kosho T, Hatamochi A, Honda T, Yamaguchi T, Okamoto N, Miyake N, Yamada S, Sugahara K. Defect in dermatan sulfate in urine of patients with Ehlers-Danlos syndrome caused by a CHST14/D4ST1 deficiency. Clin Biochem 2017; 50:670-677. [PMID: 28238810 DOI: 10.1016/j.clinbiochem.2017.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Dermatan sulfate (DS) plays a number of roles in a wide range of biological activities such as cell signaling and tissue morphogenesis through interactions with various extracellular matrix proteins including collagen. Mutations in the carbohydrate sulfotransferase 14 gene (CHST14) encoding CHST14/dermatan 4-O-sulfotransferase-1 (D4ST1), which is responsible for the biosynthesis of DS, cause a recently delineated form of Ehlers-Danlos syndrome (EDS, musculocontractural type 1), an autosomal recessive connective tissue disorder characterized by congenital malformations (specific craniofacial features, and congenital multiple contractures) and progressive fragility-related complications (skin hyperextensibility, bruisability, and fragility with atrophic scars; recurrent dislocations; progressive talipes or spinal deformities; and large subcutaneous hematomas). In an attempt to develop a diagnostic screening method for this type of EDS, the amount of DS in the urine of patients was analyzed. METHODS Urinary DS was quantified by an anion-exchange chromatography after treatment with DS-specific degrading enzyme. RESULTS DS was not detected in the urine of patients with homo- or compound heterozygous mutations in CHST14. These results suggest that the quantification of DS in urine is applicable to an initial diagnosis of DS-defective EDS. CONCLUSIONS This is the first study to perform a urinary disaccharide compositional analysis of chondroitin sulfate (CS)/DS chains in patients with EDS caused by a CHST14/D4ST1 deficiency, and demonstrated the absence of DS chains. This result suggests systemic DS depletion in this disorder, and also proposes the usefulness of a urinary disaccharide compositional analysis of CS/DS chains as a non-invasive screening method for this disorder.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Atsushi Hatamochi
- Department of Dermatology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tomoko Honda
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Yamaguchi
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan; Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
20
|
Kosho T. CHST14/D4ST1 deficiency: New form of Ehlers-Danlos syndrome. Pediatr Int 2016; 58:88-99. [PMID: 26646600 DOI: 10.1111/ped.12878] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/30/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022]
Abstract
Carbohydrate sulfotransferase 14/dermatan 4-O-sulfotransferase-1 (CHST14/D4ST1) deficiency represents a specific form of Ehlers-Danlos syndrome (EDS) caused by recessive loss-of-function mutations in CHST14. The disorder has been independently termed "adducted thumb-clubfoot syndrome", "EDS, Kosho type", and "EDS, musculocontractural type". To date, 31 affected patients from 21 families have been described. Clinically, CHST14/D4ST1 deficiency is characterized by multiple congenital malformations (craniofacial features including large fontanelle, hypertelorism, short and downslanting palpebral fissures, blue sclerae, short nose with hypoplastic columella, low-set and rotated ears, high palate, long philtrum, thin upper lip vermilion, small mouth, and micro-retrognathia; multiple congenital contractures including adduction-flexion contractures and talipes equinovarus as well as other visceral or ophthalmological malformations) and progressive multisystem fragility-related complications (skin hyperextensibility, bruisability, and fragility with atrophic scars; recurrent dislocations; progressive talipes or spinal deformities; pneumothorax or pneumohemothorax; large subcutaneous hematomas; and diverticular perforation). Etiologically, multisystem fragility is presumably caused by impaired assembly of collagen fibrils resulting from loss of dermatan sulfate (DS) in the decorin glycosaminoglycan side chain that promotes electrostatic binding between collagen fibrils. This is the first reported human disorder that specifically affects biosynthesis of DS. Its clinical characteristics indicate that CHST14/D4ST1 and, more fundamentally, DS, play a critical role in fetal development and maintenance of connective tissues in multiple organs. Considering that patients with CHST14/D4ST1 deficiency develop progressive multisystem fragility-related manifestations, establishment of a comprehensive and detailed natural history and health-care guidelines as well as further elucidation of the pathophysiology in view of future etiology-based therapy are crucial.
Collapse
Affiliation(s)
- Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
21
|
Janecke AR, Li B, Boehm M, Krabichler B, Rohrbach M, Müller T, Fuchs I, Golas G, Katagiri Y, Ziegler SG, Gahl WA, Wilnai Y, Zoppi N, Geller HM, Giunta C, Slavotinek A, Steinmann B. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A 2015; 170A:103-15. [PMID: 26373698 DOI: 10.1002/ajmg.a.37383] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with bi-allelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients had mildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria.,Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Ben Li
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California
| | - Manfred Boehm
- Translational Medicine Branch NHLBI-NIH, Bethesda, Maryland
| | - Birgit Krabichler
- Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Marianne Rohrbach
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Thomas Müller
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria
| | - Irene Fuchs
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria
| | - Gretchen Golas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shira G Ziegler
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yael Wilnai
- Division of Medical Genetics, Department of Pediatrics, Stanford University Medical Center, Stanford, California
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, Medical Faculty, University of Brescia, Brescia, Italy
| | - Herbert M Geller
- Developmental Neurobiology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Cecilia Giunta
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California
| | - Beat Steinmann
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
22
|
Syx D, Van Damme T, Symoens S, Maiburg MC, van de Laar I, Morton J, Suri M, Del Campo M, Hausser I, Hermanns-Lê T, De Paepe A, Malfait F. Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum Mutat 2015; 36:535-47. [PMID: 25703627 DOI: 10.1002/humu.22774] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/12/2015] [Indexed: 01/16/2023]
Abstract
Bi-allelic variants in CHST14, encoding dermatan 4-O-sulfotransferase-1 (D4ST1), cause musculocontractural Ehlers-Danlos syndrome (MC-EDS), a recessive disorder characterized by connective tissue fragility, craniofacial abnormalities, congenital contractures, and developmental anomalies. Recently, the identification of bi-allelic variants in DSE, encoding dermatan sulfate epimerase-1 (DS-epi1), in a child with MC-EDS features, suggested locus heterogeneity for this condition. DS-epi1 and D4ST1 are crucial for biosynthesis of dermatan sulfate (DS) moieties in the hybrid chondroitin sulfate (CS)/DS glycosaminoglycans (GAGs). Here, we report four novel families with severe MC-EDS caused by unique homozygous CHST14 variants and the second family with a homozygous DSE missense variant, presenting a somewhat milder MC-EDS phenotype. The glycanation of the dermal DS proteoglycan decorin is impaired in fibroblasts from D4ST1- as well as DS-epi1-deficient patients. However, in D4ST1-deficiency, the decorin GAG is completely replaced by CS, whereas in DS-epi1-deficiency, still some DS moieties are present. The multisystemic abnormalities observed in our patients support a tight spatiotemporal control of the balance between CS and DS, which is crucial for multiple processes including cell differentiation, organ development, cell migration, coagulation, and connective tissue integrity.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
24
|
Miyake N, Kosho T, Matsumoto N. Ehlers–Danlos Syndrome Associated with Glycosaminoglycan Abnormalities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 802:145-59. [DOI: 10.1007/978-94-007-7893-1_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Müller T, Mizumoto S, Suresh I, Komatsu Y, Vodopiutz J, Dundar M, Straub V, Lingenhel A, Melmer A, Lechner S, Zschocke J, Sugahara K, Janecke AR. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum Mol Genet 2013; 22:3761-72. [PMID: 23704329 DOI: 10.1093/hmg/ddt227] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sulfated polysaccharide dermatan sulfate (DS) forms proteoglycans with a number of distinct core proteins. Iduronic acid-containing domains in DS have a key role in mediating the functions of DS proteoglycans. Two tissue-specific DS epimerases, encoded by DSE and DSEL, and a GalNAc-4-O-sulfotransferase encoded by CHST14 are necessary for the formation of these domains. CHST14 mutations were previously identified for patients with the musculocontractural type of Ehlers-Danlos syndrome (MCEDS). We now identified a homozygous DSE missense mutation (c.803C>T, p.S268L) by the positional candidate approach in a male child with MCEDS, who was born to consanguineous parents. Heterologous expression of mutant full-length and soluble recombinant DSE proteins showed a loss of activity towards partially desulfated DS. Patient-derived fibroblasts also showed a significant reduction in epimerase activity. The amount of DS disaccharides was markedly decreased in the conditioned medium and the cell fraction from cultured fibroblasts of the patient when compared with a healthy control subject, whereas no apparent difference was observed in the chondroitin sulfate (CS) chains from the conditioned media. However, the total amount of CS disaccharides in the cell fraction from the patient was increased ∼1.5-fold, indicating an increased synthesis or a reduced conversion of CS chains in the cell fraction. Stable transfection of patient fibroblasts with a DSE expression vector increased the amount of secreted DS disaccharides. DSE deficiency represents a specific defect of DS biosynthesis. We demonstrate locus heterogeneity in MCEDS and provide evidence for the importance of DS in human development and extracellular matrix maintenance.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Pediatrics I, Division of Human Genetics, Innsbruck Medical University, Anichstrasse 35, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 2013; 288:10953-61. [PMID: 23457301 DOI: 10.1074/jbc.r112.437038] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 Japan
| | | | | |
Collapse
|
27
|
Winters KA, Jiang Z, Xu W, Li S, Ammous Z, Jayakar P, Wierenga KJ. Re-assigned diagnosis of D4ST1-deficient Ehlers-Danlos syndrome (adducted thumb-clubfoot syndrome) after initial diagnosis of Marden-Walker syndrome. Am J Med Genet A 2012; 158A:2935-40. [DOI: 10.1002/ajmg.a.35613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
|
28
|
Mendoza-Londono R, Chitayat D, Kahr WH, Hinek A, Blaser S, Dupuis L, Goh E, Badilla-Porras R, Howard A, Mittaz L, Superti-Furga A, Unger S, Nishimura G, Bonafe L. Extracellular matrix and platelet function in patients with musculocontractural Ehlers-Danlos syndrome caused by mutations in theCHST14gene. Am J Med Genet A 2012; 158A:1344-54. [DOI: 10.1002/ajmg.a.35339] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/26/2012] [Indexed: 11/11/2022]
|
29
|
Voermans NC, Kempers M, Lammens M, van Alfen N, Janssen MC, Bönnemann C, van Engelen BG, Hamel BC. Myopathy in a 20-year-old female patient with D4ST-1 deficient Ehlers-Danlos syndrome due to a homozygous CHST14 mutation. Am J Med Genet A 2012; 158A:850-5. [PMID: 22407744 DOI: 10.1002/ajmg.a.35232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/24/2011] [Indexed: 12/14/2022]
Abstract
We here report on a 20-year-old female patient with EDS due to a homozygous CHST14 single nucleotide deletion resulting in D4ST-1 deficiency, accompanied by muscle hypoplasia and muscle weakness. Findings of muscle ultrasound, electromyography, and muscle biopsy pointed to a myopathy, similarly as in other EDS types. This myopathy probably contributes to the gross motor developmental delay in this type of EDS.
Collapse
Affiliation(s)
- N C Voermans
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Baumann M, Giunta C, Krabichler B, Rüschendorf F, Zoppi N, Colombi M, Bittner R, Quijano-Roy S, Muntoni F, Cirak S, Schreiber G, Zou Y, Hu Y, Romero N, Carlier R, Amberger A, Deutschmann A, Straub V, Rohrbach M, Steinmann B, Rostásy K, Karall D, Bönnemann C, Zschocke J, Fauth C. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 2012; 90:201-16. [PMID: 22265013 DOI: 10.1016/j.ajhg.2011.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/22/2011] [Accepted: 12/09/2011] [Indexed: 02/07/2023] Open
Abstract
We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.
Collapse
|
31
|
Kosho T, Miyake N, Mizumoto S, Hatamochi A, Fukushima Y, Yamada S, Sugahara K, Matsumoto N. A response to: Loss of dermatan-4-sulfotransferase 1 (D4ST1/CHST14) function represents the first dermatan sulfate biosynthesis defect, “dermatan sulfate-deficient Adducted Thumb-Clubfoot Syndrome”. Which name is appropriate, “Adducted Thumb-Clubfoot Synd. Hum Mutat 2011; 32:1507-9. [DOI: 10.1002/humu.21586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
|
32
|
Shimizu K, Okamoto N, Miyake N, Taira K, Sato Y, Matsuda K, Akimaru N, Ohashi H, Wakui K, Fukushima Y, Matsumoto N, Kosho T. Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: Observation of two additional patients and comprehensive review of 20 reported patients. Am J Med Genet A 2011; 155A:1949-58. [DOI: 10.1002/ajmg.a.34115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/21/2011] [Indexed: 11/09/2022]
|
33
|
Amberger J, Bocchini C, Hamosh A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum Mutat 2011; 32:564-7. [PMID: 21472891 DOI: 10.1002/humu.21466] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/19/2011] [Indexed: 11/08/2022]
Abstract
OMIM's task of cataloging the association between human phenotypes and their causative genes (the Morbid Map of the Genome) and classifying and naming newly recognized disorders is growing rapidly. Establishing the relationship between genotype and phenotype has become increasingly complex. New technologies such as genome-wide association studies (GWAS) and array comparative genomic hybridization (aCGH) define "risk alleles" that are inherently prone to substantial interpretation and modification. In addition, whole exome and genome sequencing are expected to result in many reports of new mendelian disorders and their causative genes. In preparation for the onslaught of new information, we have launched a new Website to allow a more comprehensive and structured view of the contents of OMIM and to improve interconnectivity with complementary clinical and basic science genetics resources. This article focuses on the content of OMIM, the process and intent of disease classification and nosology, and anticipated improvements in our new Website (http://www.omim.org).
Collapse
Affiliation(s)
- Joanna Amberger
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
34
|
Peeters B, Benninga MA, Hennekam RC. Childhood constipation; an overview of genetic studies and associated syndromes. Best Pract Res Clin Gastroenterol 2011; 25:73-88. [PMID: 21382580 DOI: 10.1016/j.bpg.2010.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 01/31/2023]
Abstract
Constipation is a common problem in children but little is known about its exact pathophysiology. Environmental, behavioural but also genetic factors are thought to play a role in the aetiology of childhood constipation. We provide an overview of genetic studies performed in constipation. Until now, linkage studies, association studies and direct gene sequencing have failed to identify mutations in specific genes associated with constipation. We show that along with functional constipation, there are numerous clinical syndromes associated with childhood constipation. These syndromic forms of constipation appear to be the result of mutations in genes affecting all aspects of the normal physiology of human defecation. We stress that syndromic causes of childhood constipation should be considered in the evaluation of a constipated child.
Collapse
Affiliation(s)
- B Peeters
- Department of Paediatric Gastrointestinal Motility and Nutrition, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Malfait F, Syx D, Vlummens P, Symoens S, Nampoothiri S, Hermanns-Lê T, Van Laer L, De Paepe A. Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat 2010; 31:1233-9. [DOI: 10.1002/humu.21355] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Kosho T, Miyake N, Hatamochi A, Takahashi J, Kato H, Miyahara T, Igawa Y, Yasui H, Ishida T, Ono K, Kosuda T, Inoue A, Kohyama M, Hattori T, Ohashi H, Nishimura G, Kawamura R, Wakui K, Fukushima Y, Matsumoto N. A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. Am J Med Genet A 2010; 152A:1333-46. [PMID: 20503305 DOI: 10.1002/ajmg.a.33498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously described two unrelated patients showing characteristic facial and skeletal features, overlapping with the kyphoscoliosis type Ehlers-Danlos syndrome (EDS) but without lysyl hydroxylase deficiency [Kosho et al. (2005) Am J Med Genet Part A 138A:282-287]. After observations of them over time and encounter with four additional unrelated patients, we have concluded that they represent a new clinically recognizable type of EDS with distinct craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. The patients exhibited strikingly similar features according to their age: craniofacial, large fontanelle, hypertelorism, short and downslanting palpebral fissures, blue sclerae, short nose with hypoplastic columella, low-set and rotated ears, high palate, long philtrum, thin vermilion of the upper lip, small mouth, and micro-retrognathia in infancy; slender and asymmetric face with protruding jaw from adolescence; skeletal, congenital contractures of fingers, wrists, and hips, and talipes equinovarus with anomalous insertions of flexor muscles; progressive joint laxity with recurrent dislocations; slender and/or cylindrical fingers and progressive talipes valgus and cavum or planus, with diaphyseal narrowing of phalanges, metacarpals, and metatarsals; pectus deformities; scoliosis or kyphoscoliosis with decreased physiological curvatures of thoracic spines and tall vertebrae; cutaneous, progressive hyperextensibility, bruisability, and fragility with atrophic scars; fine palmar creases in childhood to acrogeria-like prominent wrinkles in adulthood, recurrent subcutaneous infections with fistula formation; cardiovascular, cardiac valve abnormalities, recurrent large subcutaneous hematomas from childhood; gastrointestinal, constipation, diverticula perforation; respiratory, (hemo)pneumothorax; and ophthalmological, strabismus, glaucoma, refractive errors.
Collapse
Affiliation(s)
- Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A, Nagashima Y, Arai E, Takahashi K, Kawamura R, Wakui K, Takahashi J, Kato H, Yasui H, Ishida T, Ohashi H, Nishimura G, Shiina M, Saitsu H, Tsurusaki Y, Doi H, Fukushima Y, Ikegawa S, Yamada S, Sugahara K, Matsumoto N. Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat 2010; 31:966-74. [PMID: 20533528 DOI: 10.1002/humu.21300] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a heterogeneous connective tissue disorder involving skin and joint laxity and tissue fragility. A new type of EDS, similar to kyphoscoliosis type but without lysyl hydroxylase deficiency, has been investigated. We have identified a homozygous CHST14 (carbohydrate sulfotransferase 14) mutation in the two familial cases and compound heterozygous mutations in four sporadic cases. CHST14 encodes dermatan 4-O-sulfotransferase 1 (D4ST1), which transfers active sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of the N-acetyl-D-galactosamine (GalNAc) residues of dermatan sulfate (DS). Transfection experiments of mutants and enzyme assays using fibroblast lysates of patients showed the loss of D4ST1 activity. CHST14 mutations altered the glycosaminoglycan (GAG) components in patients' fibroblasts. Interestingly, DS of decorin proteoglycan, a key regulator of collagen fibril assembly, was completely lost and replaced by chondroitin sulfate (CS) in the patients' fibroblasts, leading to decreased flexibility of GAG chains. The loss of the decorin DS proteoglycan due to CHST14 mutations may preclude proper collagen bundle formation or maintenance of collagen bundles while the sizes and shapes of collagen fibrils are unchanged as observed in the patients' dermal tissues. These findings indicate the important role of decorin DS in the extracellular matrix and a novel pathomechanism in EDS.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|