1
|
Reutter H, Holmdahl G. Genetic Counseling for Bladder Exstrophy-Epispadias Complex. Eur J Pediatr Surg 2021; 31:468-471. [PMID: 34911128 DOI: 10.1055/s-0041-1740336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum and has profound impact on continence, sexual, and renal function. Treatment of BEEC is primarily surgical, and the main goals are safe closure of the abdominal wall, urinary continence while preserving renal function, and adequate cosmetic and functional genital reconstruction. Psychosocial and psychosexual outcomes and adequate health-related quality of life depend on long-term multidisciplinary care. The overall outcome is now considered very positive and affected individuals usually lead self-determined and independent lives with the desire to start their own families later in life. Certainty about the risk of recurrence and the provision of information about the current state of knowledge about the identified genetic causes with high penetrance will have an impact on family planning for healthy parents with an affected child and for affected individuals themselves. This review addresses this information and presents the current state of knowledge.
Collapse
Affiliation(s)
- Heiko Reutter
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatric and Adolescent Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gundela Holmdahl
- Unit of Pediatric Oncology and Pediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Pitsava G, Feldkamp ML, Pankratz N, Lane J, Kay DM, Conway KM, Shaw GM, Reefhuis J, Jenkins MM, Almli LM, Olshan AF, Pangilinan F, Brody LC, Sicko RJ, Hobbs CA, Bamshad M, McGoldrick D, Nickerson DA, Finnell RH, Mullikin J, Romitti PA, Mills JL. Exome sequencing of child-parent trios with bladder exstrophy: Findings in 26 children. Am J Med Genet A 2021; 185:3028-3041. [PMID: 34355505 PMCID: PMC8446314 DOI: 10.1002/ajmg.a.62439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Bladder exstrophy (BE) is a rare, lower ventral midline defect with the bladder and part of the urethra exposed. The etiology of BE is unknown but thought to be influenced by genetic variation with more recent studies suggesting a role for rare variants. As such, we conducted paired-end exome sequencing in 26 child/mother/father trios. Three children had rare (allele frequency ≤ 0.0001 in several public databases) inherited variants in TSPAN4, one with a loss-of-function variant and two with missense variants. Two children had loss-of-function variants in TUBE1. Four children had rare missense or nonsense variants (one per child) in WNT3, CRKL, MYH9, or LZTR1, genes previously associated with BE. We detected 17 de novo missense variants in 13 children and three de novo loss-of-function variants (AKR1C2, PRRX1, PPM1D) in three children (one per child). We also detected rare compound heterozygous loss-of-function variants in PLCH2 and CLEC4M and rare inherited missense or loss-of-function variants in additional genes applying autosomal recessive (three genes) and X-linked recessive inheritance models (13 genes). Variants in two genes identified may implicate disruption in cell migration (TUBE1) and adhesion (TSPAN4) processes, mechanisms proposed for BE, and provide additional evidence for rare variants in the development of this defect.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, Utah
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Kristin M. Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Faith Pangilinan
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland
| | - Lawrence C. Brody
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York
| | | | - Mike Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - James Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
3
|
Zhou H, Xu PP, Li MJ, Liu L, Ding BJ, Liu JP, Zhao HF, Zhou KS, Song YP. [MYH9 related disease with thrombocytopenia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:334-335. [PMID: 32447941 PMCID: PMC7364931 DOI: 10.3760/cma.j.issn.0253-2727.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 11/05/2022]
Affiliation(s)
- H Zhou
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - P P Xu
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - M J Li
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - L Liu
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - B J Ding
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - J P Liu
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - H F Zhao
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - K S Zhou
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| | - Y P Song
- Department of Hematology, Henan Cancer Hospital (The Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou 450008, China
| |
Collapse
|
4
|
Romasko EJ, Devkota B, Biswas S, Jayaraman V, Rajagopalan R, Dulik MC, Thom CS, Choi J, Jairam S, Scarano MI, Krantz ID, Spinner NB, Conlin LK, Lambert MP. Utility and limitations of exome sequencing in the molecular diagnosis of pediatric inherited platelet disorders. Am J Hematol 2018; 93:8-16. [PMID: 28960434 DOI: 10.1002/ajh.24917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022]
Abstract
Inherited platelet disorders (IPD) are a heterogeneous group of rare disorders that affect platelet number and function and often predispose to other significant medical complications. In spite of the identification of over 50 IPD disease-associated genes, a molecular diagnosis is only identified in a minority (10%) of affected patients without a clinically suspected etiology. We studied a cohort of 21 pediatric patients with suspected IPDs by exome sequencing (ES) to: (1) examine the performance of the exome test for IPD genes, (2) determine if this exome-wide diagnostic test provided a higher diagnostic yield than has been previously reported, (3) to evaluate the frequency of variants of uncertain significance identified, and (4) to identify candidate variants for functional evaluation in patients with an uncertain or negative diagnosis. We established a high priority gene list of 53 genes, evaluated exome capture kit performance, and determined the coverage for these genes and disease-related variants. We identified likely disease causing variants in 5 of the 21 probands (23.8%) and variants of uncertain significance in 52% of patients studied. In conclusion, ES has the potential to molecularly diagnose causes of IPD, and to identify candidate genes for functional evaluation. Robust exome sequencing also requires that coverage of genes known to be associated with clinical findings of interest need to be carefully examined and supplemented if necessary. Clinicians who undertake ES should understand the limitations of the test and the full significance of results that may be returned.
Collapse
Affiliation(s)
- Edward J. Romasko
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Batsal Devkota
- Department of Biomedical and Health Informatics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Sawona Biswas
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Vijayakumar Jayaraman
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Ramakrishnan Rajagopalan
- Department of Biomedical and Health Informatics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Matthew C. Dulik
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Christopher S. Thom
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
| | - Jiwon Choi
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Sowmya Jairam
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York New York
| | | | - Ian D. Krantz
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia Pennsylvania
| | - Laura K. Conlin
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia Pennsylvania
| | - Michele P. Lambert
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
- Division of Hematology; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
5
|
Genetics of human congenital urinary bladder disease. Pediatr Nephrol 2014; 29:353-60. [PMID: 23584850 DOI: 10.1007/s00467-013-2472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Lower urinary tract and/or kidney malformations are collectively the most common cause of end-stage renal disease in children, and they are also likely to account for a major subset of young adults requiring renal replacement therapy. Advances have been made regarding the discovery of the genetic causes of human kidney malformations. Indeed, testing for mutations of key nephrogenesis genes is now feasible for patients seen in nephrology clinics. Unfortunately, less is known about defined genetic bases of human lower urinary tract anomalies. The focus of this review is the genetic bases of congenital structural and functional disorders of the urinary bladder. Three are highlighted. First, prune belly syndrome, where mutations of CHRM3, encoding an acetylcholine receptor, HNF1B, encoding a transcription factor, and ACTA2, encoding a cytoskeletal protein, have been reported. Second, the urofacial syndrome, where mutations of LRIG2 and HPSE2, encoding proteins localised in nerves invading the fetal bladder, have been defined. Finally, we review emerging evidence that bladder exstrophy may have genetic bases, including variants in the TP63 promoter. These genetic discoveries provide a new perspective on a group of otherwise poorly understood diseases.
Collapse
|
6
|
Barone C, Bartoloni G, Cataliotti A, Indaco L, Pappalardo E, Barrano B, Ettore G, Bianca S. Prenatal diagnosis of 45,X/46,XY mosaicism with cleft lip and epispadias. Arch Gynecol Obstet 2011; 284:509-11. [PMID: 21594604 DOI: 10.1007/s00404-011-1928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022]
Abstract
INTRODUCTION 45,X/46,XY mosaicism is an uncommon chromosomal anomaly with a range of phenotypes from normal males to cases of multiple congenital anomalies. MATERIALS AND METHODS We report a case with associated cleft lip and epispadias prenatally diagnosed with autopsy evidences. CONCLUSION Our case, with an uncommon association of congenital anomalies, stresses the difficulty of prenatal counselling regarding 45,X/46,XY mosaicism and discuss the possible role of sex chromosome genes that may be involved in the pathogenesis of both types of midline defect.
Collapse
Affiliation(s)
- Chiara Barone
- Centro di Consulenza Genetica e di Teratologia della Riproduzione, Laboratorio di Citogenetica, Dipartimento Materno Infantile, ARNAS Garibaldi Nesima, Via Palermo, 636, 95123 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ebert AK, Reutter H, Ludwig M, Rösch WH. The exstrophy-epispadias complex. Orphanet J Rare Dis 2009; 4:23. [PMID: 19878548 PMCID: PMC2777855 DOI: 10.1186/1750-1172-4-23] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 10/30/2009] [Indexed: 11/26/2022] Open
Abstract
Exstrophy-epispadias complex (EEC) represents a spectrum of genitourinary malformations ranging in severity from epispadias (E) to classical bladder exstrophy (CEB) and exstrophy of the cloaca (EC). Depending on severity, EEC may involve the urinary system, musculoskeletal system, pelvis, pelvic floor, abdominal wall, genitalia, and sometimes the spine and anus. Prevalence at birth for the whole spectrum is reported at 1/10,000, ranging from 1/30,000 for CEB to 1/200,000 for EC, with an overall greater proportion of affected males. EEC is characterized by a visible defect of the lower abdominal wall, either with an evaginated bladder plate (CEB), or with an open urethral plate in males or a cleft in females (E). In CE, two exstrophied hemibladders, as well as omphalocele, an imperforate anus and spinal defects, can be seen after birth. EEC results from mechanical disruption or enlargement of the cloacal membrane; the timing of the rupture determines the severity of the malformation. The underlying cause remains unknown: both genetic and environmental factors are likely to play a role in the etiology of EEC. Diagnosis at birth is made on the basis of the clinical presentation but EEC may be detected prenatally by ultrasound from repeated non-visualization of a normally filled fetal bladder. Counseling should be provided to parents but, due to a favorable outcome, termination of the pregnancy is no longer recommended. Management is primarily surgical, with the main aims of obtaining secure abdominal wall closure, achieving urinary continence with preservation of renal function, and, finally, adequate cosmetic and functional genital reconstruction. Several methods for bladder reconstruction with creation of an outlet resistance during the newborn period are favored worldwide. Removal of the bladder template with complete urinary diversion to a rectal reservoir can be an alternative. After reconstructive surgery of the bladder, continence rates of about 80% are expected during childhood. Additional surgery might be needed to optimize bladder storage and emptying function. In cases of final reconstruction failure, urinary diversion should be undertaken. In puberty, genital and reproductive function are important issues. Psychosocial and psychosexual outcome depend on long-term multidisciplinary care to facilitate an adequate quality of life.
Collapse
Affiliation(s)
- Anne-Karoline Ebert
- Department of Pediatric Urology, University Medical Center Regensburg, Germany.
| | | | | | | |
Collapse
|
8
|
Ludwig M, Ching B, Reutter H, Boyadjiev SA. Bladder exstrophy-epispadias complex. ACTA ACUST UNITED AC 2009; 85:509-22. [DOI: 10.1002/bdra.20557] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Reutter H, Qi L, Gearhart JP, Boemers T, Ebert AK, Rösch W, Ludwig M, Boyadjiev SA. Concordance analyses of twins with bladder exstrophy–epispadias complex suggest genetic etiology. Am J Med Genet A 2007; 143A:2751-6. [DOI: 10.1002/ajmg.a.31975] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|