1
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
2
|
Kosuga M, Mashima R, Hirakiyama A, Fuji N, Kumagai T, Seo JH, Nikaido M, Saito S, Ohno K, Sakuraba H, Okuyama T. Molecular diagnosis of 65 families with mucopolysaccharidosis type II (Hunter syndrome) characterized by 16 novel mutations in the IDS gene: Genetic, pathological, and structural studies on iduronate-2-sulfatase. Mol Genet Metab 2016; 118:190-197. [PMID: 27246110 DOI: 10.1016/j.ymgme.2016.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Mucopolysaccharidosis type II (MPS II: also called as Hunter syndrome) is an X-linked recessive lysosomal storage disorder characterized by the accumulation of extracellular glycosaminoglycans due to the deficiency of the enzyme iduronate-2-sulfatase (IDS). Previous observations suggested that MPS II can be classified into two distinct disease subtypes: (1) severe type of MPS II involves a decline in the cognitive ability of a patient and (2) attenuated type of MPS II exhibits no such intellectual phenotype. To determine whether such disease subtypes of MPS II could be explained by genetic diagnosis, we analyzed mutations in the IDS gene of 65 patients suffering from MPS II among the Japanese population who were diagnosed with both the accumulation of urinary glycosaminoglycans and a decrease in their IDS enzyme activity between 2004 and 2014. Among the specimens examined, we identified the following mutations: 33 missense, 8 nonsense, 7 frameshift, 4 intronic changes affecting splicing, 8 recombinations involving IDS-IDS2, and 7 other mutations including 4 large deletions. Consistent with the previous data, the results of our study showed that most of the attenuated phenotype was derived from the missense mutations of the IDS gene, whereas mutations associated with a large structural alteration including recombination, splicing, frameshift, and nonsense mutations were linked to the severe phenotype of MPS II. Furthermore, we conducted a homology modeling study of IDS P120R and N534I mutant as representatives of the causative mutation of the severe and attenuated type of MPS II, respectively. We found that the substitution of P120R of the IDS enzyme was predicted to deform the α-helix generated by I119-F123, leading to the major structural alteration of the wild-type IDS enzyme. In sharp contrast, the effect of the structural alteration of N534I was marginal; thus, this mutation was pathogenically predicted to be associated with the attenuated type of MPS II. These results suggest that a combination of the genomic diagnosis of the IDS gene and the structural prediction of the IDS enzyme could enable the prediction of a phenotype more effectively.
Collapse
Affiliation(s)
- Motomichi Kosuga
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Asami Hirakiyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Naoko Fuji
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tadayuki Kumagai
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Joo-Hyun Seo
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mari Nikaido
- Biobank, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2 Nishinopporo, Ebetsu, Hokkaido 069-8585, Japan
| | - Kazuki Ohno
- Catalyst Inc., 1-5-6 Kudan-minami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Torayuki Okuyama
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
3
|
Alcántara-Ortigoza MA, García-de Teresa B, González-Del Angel A, Berumen J, Guardado-Estrada M, Fernández-Hernández L, Navarrete-Martínez JI, Maza-Morales M, Rius-Domínguez R. Wide allelic heterogeneity with predominance of large IDS gene complex rearrangements in a sample of Mexican patients with Hunter syndrome. Clin Genet 2016; 89:574-83. [PMID: 26762690 DOI: 10.1111/cge.12738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/26/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
Hunter syndrome or mucopolysaccharidosis type II (MPSII) is caused by pathogenic variants in the IDS gene. This is the first study that examines the mutational spectrum in 25 unrelated Mexican MPSII families. The responsible genotype was identified in 96% of the families (24/25) with 10 novel pathogenic variants: c.133G>C, c.1003C>T, c.1025A>C, c.463_464delinsCCGTATAGCTGG, c.754_767del, c.1132_1133del, c.1463del, c.508-1G>C, c.1006+1G>T and c.(-217_103del). Extensive IDS gene deletions were identified in four patients; using DNA microarray analysis two patients showed the loss of the entire AFF2 gene, and epilepsy developed in only one of them. Wide allelic heterogeneity was noted, with large gene alterations (e.g. IDS/IDSP1 gene inversions, partial to extensive IDS deletions, and one chimeric IDS-IDSP1 allele) that occurred at higher frequencies than previously reported (36% vs 18.9-29%). The frequency of carrier mothers (80%) is consistent with previous descriptions (>70%). Carrier assignment allowed molecular prenatal diagnoses. Notably, somatic and germline mosaicism was identified in one family, and two patients presented thrombocytopenic purpura and pancytopenia after idursulfase enzyme replacement treatment. Our findings suggest a wide allelic heterogeneity in Mexican MPSII patients; DNA microarray analysis contributes to further delineation of the resulting phenotype for IDS and neighboring loci deletions.
Collapse
Affiliation(s)
- M A Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Distrito Federal, México
| | - B García-de Teresa
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Distrito Federal, México
| | - A González-Del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Distrito Federal, México
| | - J Berumen
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Distrito Federal, México.,Unidad de Medicina Genómica, Hospital General de México, Distrito Federal, México
| | - M Guardado-Estrada
- Unidad de Medicina Genómica, Hospital General de México, Distrito Federal, México
| | - L Fernández-Hernández
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Distrito Federal, México
| | - J I Navarrete-Martínez
- Servicio de Genética. Hospital de Alta Especialidad PEMEX Picacho Sur, Distrito Federal, México
| | - M Maza-Morales
- Médico Residente de Pediatría, Instituto Nacional de Pediatría, Distrito Federal, México
| | - R Rius-Domínguez
- Médico Residente de Genética Médica, Departamento de Genética Humana, Instituto Nacional de Pediatría, Distrito Federal, México
| |
Collapse
|
4
|
Zanetti A, Tomanin R, Rampazzo A, Rigon C, Gasparotto N, Cassina M, Clementi M, Scarpa M. A Hunter Patient with a Severe Phenotype Reveals Two Large Deletions and Two Duplications Extending 1.2 Mb Distally to IDS Locus. JIMD Rep 2014; 17:13-21. [PMID: 25059704 PMCID: PMC4241202 DOI: 10.1007/8904_2014_317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 03/24/2023] Open
Abstract
Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an X-linked lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS), an enzyme involved in the glycosaminoglycans (GAGs) degradation. We here report the case of a 9-year-old boy who was diagnosed with an extremely severe form of MPS II at 10 months of age. Sequencing of the IDS gene revealed the deletion of exons 1-7, extending distally and removing the entire pseudogene IDSP1. The difficulty to define the boundaries of the deletion and the particular severity of the patient phenotype suggested to verify the presence of pathological copy number variations (CNVs) in the genome, by the array CGH (aCGH) technology. The examination revealed the presence of two deletions alternate with two duplications, overall affecting a region of about 1.2 Mb distally to IDS gene. This is the first complex rearrangement involving IDS and extending to a large region located distally to it described in a severe Hunter patient, as evidenced by the CNVs databases interrogated. The analysis of the genes involved in the rearrangement and of the disorders correlated with them did not help to clarify the phenotype observed in our patient, except for the deletion of the IDS gene, which explains per se the Hunter phenotype. However, this cannot exclude a potential "contiguous gene syndrome" as well as the future rising of additional pathological symptoms associated with the other extra genes involved in the identified rearrangement.
Collapse
Affiliation(s)
- Alessandra Zanetti
- />Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Rosella Tomanin
- />Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Angelica Rampazzo
- />Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Chiara Rigon
- />Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Nicoletta Gasparotto
- />Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Matteo Cassina
- />Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maurizio Clementi
- />Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maurizio Scarpa
- />Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Honda S, Hayashi S, Nakane T, Imoto I, Kurosawa K, Mizuno S, Okamoto N, Kato M, Yoshihashi H, Kubota T, Nakagawa E, Goto YI, Inazawa J. The incidence of hypoplasia of the corpus callosum in patients with dup (X)(q28) involving MECP2 is associated with the location of distal breakpoints. Am J Med Genet A 2012; 158A:1292-303. [PMID: 22528406 DOI: 10.1002/ajmg.a.35321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/23/2012] [Indexed: 01/09/2023]
Abstract
Duplications of Xq28 harboring the methyl CpG binding protein 2 (MECP2) gene explain approximately 1% of X-linked intellectual disability (XLID). The common clinical features observed in patients with dup(X)(q28) are severe ID, infantile hypotonia, mild dysmorphic features and a history of recurrent infections, and MECP2 duplication syndrome is now recognized as a clinical entity. While some patients with this syndrome have other characteristic phenotypes, the reason for the spectrum of phenotypes has not been clarified. Since dup(X)(q28) rearrangements vary in size and location, genes other than MECP2 might affect the phenotype. We used a high-density oligonucleotide array to carry out precise mapping in eight Japanese families in which dup(X)(q28) was detected using an in-house bacterial artificial chromosome-based microarray to screen cohorts of individuals with multiple congenital anomalies and intellectual disability (MCA/ID) or with XLID. We hypothesized that the size, gene content, and location of dup(X)(q28) may contribute to variable expressively observed in MECP2 duplication syndrome. Genotype-phenotype correlation in our cases together with cases reported in the literature suggested that copy-number gains between two low copy repeats (LCRK1 and LCRL1) are associated with the incidence of hypoplasia of the corpus callosum. Further studies are necessary to understand the mechanism of this association.
Collapse
Affiliation(s)
- Shozo Honda
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sahoo T, Theisen A, Marble M, Tervo R, Rosenfeld JA, Torchia BS, Shaffer LG. Microdeletion of Xq28 involving the AFF2 (FMR2) gene in two unrelated males with developmental delay. Am J Med Genet A 2011; 155A:3110-5. [PMID: 22065534 DOI: 10.1002/ajmg.a.34345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/12/2011] [Indexed: 11/06/2022]
Abstract
Fragile X E (FRAXE) is an X-linked form of intellectual disability characterized by mild to moderate cognitive impairment, speech delay, hyperactivity, and autistic behavior. The folate-sensitive fragile site FRAXE is located in Xq28 approximately 600 kb distal to the fragile X syndrome fragile site (FRAXA) and harbors an unstable GCC (CCG) triplet repeat adjacent to a CpG island in the 5' untranslated region of the AFF2 (FMR2) gene. The disorder results from amplification and methylation of the GCC repeat and resultant silencing of AFF2. Although chromosome abnormalities that disrupt AFF2 have been reported in two individuals with mild-moderate intellectual disability, microdeletions of Xq28 that delete only AFF2 have not been described as a potential cause of FRAXE-intellectual disability. We performed clinical and molecular characterization of two males with 240 and 499 kb deletions, respectively, at Xq28, both of which encompassed only one gene, AFF2. The 240 kb deletion in Patient 1 was intragenic and lead to the loss of 5' exons 2-4 of AFF2; the 499 kb deletion in Patient 2 removed the 5' exons 1-2 of AFF2 including approximately 350 kb upstream of the gene. Both individuals had developmental and speech delay, and one had mild dysmorphism. We predict disruption of AFF2 in these two patients is likely the cause of their overlapping phenotypes.
Collapse
Affiliation(s)
- Trilochan Sahoo
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Stettner GM, Shoukier M, Höger C, Brockmann K, Auber B. Familial intellectual disability and autistic behavior caused by a small FMR2 gene deletion. Am J Med Genet A 2011; 155A:2003-7. [DOI: 10.1002/ajmg.a.34122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 04/30/2011] [Indexed: 11/06/2022]
|
8
|
Honda S, Hayashi S, Imoto I, Toyama J, Okazawa H, Nakagawa E, Goto YI, Inazawa J. Copy-number variations on the X chromosome in Japanese patients with mental retardation detected by array-based comparative genomic hybridization analysis. J Hum Genet 2010; 55:590-9. [PMID: 20613765 DOI: 10.1038/jhg.2010.74] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-linked mental retardation (XLMR) is a common, clinically complex and genetically heterogeneous disease arising from many mutations along the X chromosome. Although research during the past decade has identified >90 XLMR genes, many more remain uncharacterized. In this study, copy-number variations (CNVs) were screened in individuals with MR from 144 families by array-based comparative genomic hybridization (aCGH) using a bacterial artificial chromosome-based X-tiling array. Candidate pathogenic CNVs (pCNVs) were detected in 10 families (6.9%). Five of the families had pCNVs involving known XLMR genes, duplication of Xq28 containing MECP2 in three families, duplication of Xp11.22-p11.23 containing FTSJ1 and PQBP1 in one family, and deletion of Xp11.22 bearing SHROOM4 in one family. New candidate pCNVs were detected in five families as follows: identical complex pCNVs involved in dup(X)(p22.2) and dup(X)(p21.3) containing part of REPS2, NHS and IL1RAPL1 in two unrelated families, duplication of Xp22.2 including part of FRMPD4, duplication of Xq21.1 including HDX and deletion of Xq24 noncoding region in one family, respectively. Both parents and only mother samples were available in six and three families, respectively, and pCNVs were inherited from each of their mothers in those families other than a family of the proband with deletion of SHROOM4. This study should help to identify the novel XLMR genes and mechanisms leading to MR and reveal the clinical conditions and genomic background of XLMR.
Collapse
Affiliation(s)
- Shozo Honda
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Novel deletion at Xq24 including the UBE2A gene in a patient with X-linked mental retardation. J Hum Genet 2010; 55:244-7. [PMID: 20339384 DOI: 10.1038/jhg.2010.14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By using an in-house bacterial artificial chromosome-based X-tilling array, we detected a 0.4 Mb novel deletion at Xq24 that included UBE2A in a 4-year-old and 10-month-old boy with mental retardation and various other characteristics inherited from his mother; for example, marked developmental delay, synophrys, ocular hypertelorism, esotropia, low nasal bridge, marked generalized hirsutism and seizure. Although additional nine transcripts around UBE2A were also defective, a phenotypic similarity with a recently reported X-linked familial case involving a novel X-linked mental retardation syndrome and a nonsense mutation of UBE2A indicates a functional defect of UBE2A to be responsible for most of the abnormalities in these cases. Because some characteristics, such as congenital heart disease and proximal placement of the thumb, were not described in the family reported previously, suggesting genes other than UBE2A within the deleted region to be responsible for those abnormalities.
Collapse
|
10
|
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 2008; 18:1011-9. [PMID: 18593815 DOI: 10.1101/gr.070409.107] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tandem repeats are common features of both prokaryote and eukaryote genomes, where they can be found not only in intergenic regions but also in both the noncoding and coding regions of a variety of different genes. The repeat expansion diseases are a group of human genetic disorders caused by long and highly polymorphic tandem repeats. These disorders provide many examples of the effects that such repeats can have on many biological processes. While repeats in the coding sequence can result in the generation of toxic or malfunctioning proteins, noncoding repeats can also have significant effects including the generation of chromosome fragility, the silencing of the genes in which they are located, the modulation of transcription and translation, and the sequestering of proteins involved in processes such as splicing and cell architecture.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
11
|
Hayashi S, Mizuno S, Migita O, Okuyama T, Makita Y, Hata A, Imoto I, Inazawa J. TheCASKgene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am J Med Genet A 2008; 146A:2145-51. [DOI: 10.1002/ajmg.a.32433] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Hayashi S, Honda S, Minaguchi M, Makita Y, Okamoto N, Kosaki R, Okuyama T, Imoto I, Mizutani S, Inazawa J. Construction of a high-density and high-resolution human chromosome X array for comparative genomic hybridization analysis. J Hum Genet 2007; 52:397-405. [PMID: 17406783 DOI: 10.1007/s10038-007-0127-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The human chromosome X is closely associated with congenital disorders and mental retardation (MR), because it contains a significantly higher number of genes than estimated from the proportion in the human genome. We constructed a high-density and high-resolution human chromosome X array (X-tiling array) for comparative genomic hybridization (CGH). The array contains a total of 1,001 bacterial artificial chromosome (BACs) throughout chromosome X except pseudoautosomal regions and two BACs specific for Y. In four hybridizations using DNA samples from healthy males, the ratio of each spotted DNA was scattered between -3SD and 3SD, corresponding to a log(2) ratio of -0.35 and 0.35, respectively. Using DNA samples from patients with known congenital disorders, our X-tiling array was proven to discriminate one-copy losses and gains together with their physical sizes, and also to estimate the percentage of a mosaicism in a patient with mos 45,X[13]/46,X,r(X)[7]. Furthermore, array-CGH in a patient with atypical Schinzel-Giedion syndrome disclosed a 1.1-Mb duplication at Xq22.3 including a part of the IL1RAPL2 gene as a likely causative aberration. The results indicate our in-house X-tiling array to be useful for the identification of cryptic copy-number aberrations containing novel genes responsible for diseases such as congenital disorders and X-linked MR.
Collapse
Affiliation(s)
- Shin Hayashi
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Pediatric and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), 4-1-8 Hon-machi Kawaguchi, Saitama, 332-0012, Japan
| | - Shozo Honda
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Pediatric and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), 4-1-8 Hon-machi Kawaguchi, Saitama, 332-0012, Japan
| | - Maki Minaguchi
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), 4-1-8 Hon-machi Kawaguchi, Saitama, 332-0012, Japan
| | - Yoshio Makita
- Department of Pediatrics, Asahikawa Medical Collage, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Nobuhiko Okamoto
- Department of Planning and Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Murodocho 840, Izumi, Osaka, Japan
| | - Rika Kosaki
- Department of Clinical Genetics and Molecular Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Torayuki Okuyama
- Department of Clinical Genetics and Molecular Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Issei Imoto
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), 4-1-8 Hon-machi Kawaguchi, Saitama, 332-0012, Japan
| | - Shuki Mizutani
- Department of Pediatric and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
- 21st Century Center of Excellence Program for Molecular Destruction and Reconstitution of Tooth and Bone, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
- Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), 4-1-8 Hon-machi Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|