1
|
Atli EI, Atli E, Inan C, Varol GF, Mail C, Erbilen EA, Yalcintepe S, Demir S, Gurkan H. Prenatal diagnosis and molecular cytogenetic characterization of partial dup (18p)/del (18q) due to a maternal pericentric inversion 18 in a foetus with multiple anomalies. Taiwan J Obstet Gynecol 2022; 61:504-509. [PMID: 35595446 DOI: 10.1016/j.tjog.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE The 18q terminal deletion with inverted duplication is an extremely rare abnormality, with only three confirmed cases in Europe to date. Here, we report, for the first time, a case of de novo 18q inv-dup-del in a Turkish pregnant woman. CASE REPORT A 30-year-old pregnant woman was referred for genetic analysis at her 25th gestational week due to foetal diaphragmatic hernia and rocker bottom feet. Cytogenetic analysis of the parents revealed a karyotype of 46,XX,inv(18) (p11.3q21.3) of the mother and a normal karyotype of the father. The foetal karyotype was defined as 46,XX,rec(18)del(18q)inv(18) (p11.3q21.3)mat. CONCLUSION To our knowledge, this is the first report of a prenatal diagnosis. Genetic counselling issues for this family, particularly affected individuals, include an increased likelihood of reduced fertility and a risk of recurrence of parental inversion equal to 1/2 in surviving offspring.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey.
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Cihan Inan
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Gülizar Fusun Varol
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Cisem Mail
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Esra Altan Erbilen
- Division of Perinatology, Department of Obstetrics & Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Popescu R, Grămescu M, Caba L, Pânzaru MC, Butnariu L, Braha E, Popa S, Rusu C, Cardos G, Zeleniuc M, Martiniuc V, Gug C, Păduraru L, Stamatin M, Diaconu CC, Gorduza EV. A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature. Genes (Basel) 2021; 12:genes12121957. [PMID: 34946906 PMCID: PMC8701147 DOI: 10.3390/genes12121957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
We present a complex chromosomal anomaly identified using cytogenetic and molecular methods. The child was diagnosed during the neonatal period with a multiple congenital anomalies syndrome characterized by: flattened occipital region; slight turricephaly; tall and broad forehead; hypertelorism; deep-set eyes; down slanting and short palpebral fissures; epicanthic folds; prominent nose with wide root and bulbous tip; microstomia; micro-retrognathia, large, short philtrum with prominent reliefs; low set, prominent ears; and congenital heart disease. The GTG banding karyotype showed a 46,XY,der(10)(10pter→10q26.2::4q26→4qter) chromosomal formula and his mother presented an apparently balanced reciprocal translocation: 46,XX,t(4;10)(q26;q26.2). The chromosomal anomalies of the child were confirmed by MLPA, and supplementary investigation discovered a quadruplication of the 4q35.2 region. The mother has a triplication of the same chromosomal fragment (4q35.2). Using array-CGH, we described the anomalies completely. Thus, the boy has a 71,057 kb triplication of the 4q26-q35.2 region, a 562 kb microdeletion in the 10q26.3 region, and a 795 kb quadruplication of the 4q35.2 region, while the mother presents a 795 kb triplication of the 4q35.2 region. Analyzing these data, we consider that the boy's phenotype is influenced only by the 4q partial trisomy. We compare our case with similar cases, and we review the literature data.
Collapse
Affiliation(s)
- Roxana Popescu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Mihaela Grămescu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Lavinia Caba
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
- Correspondence: (L.C.); (C.G.)
| | - Monica-Cristina Pânzaru
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Lăcrămioara Butnariu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Elena Braha
- “C. I. Parhon” National Institute of Endocrinology, 34-35 Aviatorilor Avenue, 011853 Bucharest, Romania;
| | - Setalia Popa
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Cristina Rusu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Georgeta Cardos
- Personal Genetics Laboratory Bucharest, 4 Strada Frumoasa Street, 010987 Bucharest, Romania; (G.C.); (M.Z.)
| | - Monica Zeleniuc
- Personal Genetics Laboratory Bucharest, 4 Strada Frumoasa Street, 010987 Bucharest, Romania; (G.C.); (M.Z.)
- Medical Genetics Department, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Avenue, 050474 Bucharest, Romania
| | - Violeta Martiniuc
- Medical Genetics Department, “Cuza-Vodă” Obstetrics and Gynecology Hospital, 34 Cuza Voda Street, 700038 Iasi, Romania;
| | - Cristina Gug
- Microscopic Morphology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Piata Eftimie Murgu, 300041 Timișoara, Romania
- Correspondence: (L.C.); (C.G.)
| | - Luminiţa Păduraru
- Neonatology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (L.P.); (M.S.)
| | - Maria Stamatin
- Neonatology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (L.P.); (M.S.)
| | - Carmen C. Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 285 Mihai Bravu, 030304 Bucharest, Romania;
| | - Eusebiu Vlad Gorduza
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
- Medical Genetics Department, “Cuza-Vodă” Obstetrics and Gynecology Hospital, 34 Cuza Voda Street, 700038 Iasi, Romania;
| |
Collapse
|
3
|
Robberecht C, Voet T, Zamani Esteki M, Nowakowska BA, Vermeesch JR. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res 2012; 23:411-8. [PMID: 23212949 PMCID: PMC3589530 DOI: 10.1101/gr.145631.112] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large-scale analysis of balanced chromosomal translocation breakpoints has shown nonhomologous end joining and microhomology-mediated repair to be the main drivers of interchromosomal structural aberrations. Breakpoint sequences of de novo unbalanced translocations have not yet been investigated systematically. We analyzed 12 de novo unbalanced translocations and mapped the breakpoints in nine. Surprisingly, in contrast to balanced translocations, we identify nonallelic homologous recombination (NAHR) between (retro)transposable elements and especially long interspersed elements (LINEs) as the main mutational mechanism. This finding shows yet another involvement of (retro)transposons in genomic rearrangements and exposes a profoundly different mutational mechanism compared with balanced chromosomal translocations. Furthermore, we show the existence of compound maternal/paternal derivative chromosomes, reinforcing the hypothesis that human cleavage stage embryogenesis is a cradle of chromosomal rearrangements.
Collapse
Affiliation(s)
- Caroline Robberecht
- Laboratory for Molecular Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
4
|
Hermetz KE, Surti U, Cody JD, Rudd MK. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol Cytogenet 2012; 5:6. [PMID: 22260357 PMCID: PMC3292815 DOI: 10.1186/1755-8166-5-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. RESULTS Array CGH resolved the breakpoints of the 6.97-Megabase (Mb) loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV) elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. CONCLUSIONS Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR) affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
PURPOSE Microarray technology has revolutionized the field of clinical genetics with the ability to detect very small copy number changes. However, challenges remain in linking genotype with phenotype. Our goal is to enable a clinical geneticist to align the molecular karyotype information from an individual patient with the annotated genomic content, so as to provide a clinical prognosis. METHODS We have combined data regarding copy number variations, microdeletion syndromes, and classical chromosome abnormalities, with the sparse but growing knowledge about the biological role of specific genes to create a genomic map of Chromosome 18 with clinical utility. RESULTS We have created a draft model of such a map, drawing from our long-standing interest in and data regarding the abnormalities of Chromosome 18. CONCLUSION We have taken the first step toward creating a genomic map that can be used by the clinician in counseling and directing preventive or symptomatic care of individuals with Chromosome 18 abnormalities.
Collapse
|
6
|
Heard PL, Carter EM, Crandall AC, Sebold C, Hale DE, Cody JD. High resolution genomic analysis of 18q- using oligo-microarray comparative genomic hybridization (aCGH). Am J Med Genet A 2009; 149A:1431-7. [PMID: 19533772 DOI: 10.1002/ajmg.a.32900] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The advent of oligonucleotide array comparative genomic hybridization (aCGH) has revolutionized diagnosis of chromosome abnormalities in the genetics clinic. This new technology also has valuable potential as a research tool to investigate larger genomic rearrangements that are typically diagnosed via routine karyotype. aCGH was used as a tool for the high-resolution analysis of chromosome content in individuals with known deletions of chromosome 18. The aim of this study was to clarify the precise location of the breakpoints as well as to determine the presence of occult translocations creating additional deletions and duplications. One hundred eighty-nine DNA samples from individuals with 18q deletions were analyzed. No breakpoint clusters were identified, as no more than two individuals had breakpoints within 2 kb of each other. Only two regions of 18q were never found to be haploid, suggesting the existence of haplolethal genes in those regions. Of the individuals with only a chromosome 18 abnormality, 17% (n = 29) had interstitial deletions. Six percent (n = 11) had a region of duplication immediately proximal to the deletion. Eight percent (n = 15) had more complex rearrangements with captured (non-18q) telomeres thus creating a trisomic region. The 15 captured telomeres originated from a limited number of other telomeres (4q, 10q, 17p, 18p, 20q, and Xq). These data were converted into a format for ease of viewing and analysis by creating custom tracks for the UCSC Genome Browser. Taken together, these findings confirm a higher level of variability and genomic complexity surrounding deletions of 18q than has previously been appreciated.
Collapse
Affiliation(s)
- Patricia L Heard
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|