1
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Scalia B, Venti V, Ciccia LM, Criscione R, Lo Bianco M, Sciuto L, Falsaperla R, Zanghì A, Praticò AD. Aristaless-Related Homeobox (ARX): Epilepsy Phenotypes beyond Lissencephaly and Brain Malformations. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans and are responsible for both malformation (in particular lissencephaly) and nonmalformation complex phenotypes. The epilepsy phenotypes related to ARX mutations are West syndrome and X-linked infantile spasms, X-linked myoclonic epilepsy with spasticity and intellectual development and Ohtahara and early infantile epileptic encephalopathy syndrome, which are related in most of the cases to intellectual disability and are often drug resistant. In this article, we shortly reviewed current knowledge of the function of ARX with a particular attention on its consequences in the development of epilepsy during early childhood.
Collapse
Affiliation(s)
- Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina M. Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Moey C, Topper S, Karn M, Johnson AK, Das S, Vidaurre J, Shoubridge C. Reinitiation of mRNA translation in a patient with X-linked infantile spasms with a protein-truncating variant in ARX. Eur J Hum Genet 2015; 24:681-9. [PMID: 26306640 DOI: 10.1038/ejhg.2015.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Aristaless-related homeobox gene (ARX) lead to a range of X-linked intellectual disability phenotypes, with truncating variants generally resulting in severe X-linked lissencephaly with ambiguous genitalia (XLAG), and polyalanine expansions and missense variants resulting in infantile spasms. We report two male patients with early-onset infantile spasms in whom a novel c.34G>T (p.(E12*)) variant was identified in the ARX gene. A similar variant c.81C>G (p.(Y27*)), has previously been described in two affected cousins with early-onset infantile spasms, leading to reinitiation of ARX mRNA translation resulting in an N-terminal truncated protein. We show that the novel c.34G>T (p.(E12*)) variant also reinitiated mRNA translation at the next AUG codon (c.121-123 (p.M41)), producing the same N-terminally truncated protein. The production of both of these truncated proteins was demonstrated to be at markedly reduced levels using in vitro cell assays. Using luciferase reporter assays, we demonstrate that transcriptional repression capacity of ARX was diminished by both the loss of the N-terminal corepressor octapeptide domain, as a consequence of truncation, and the marked reduction in mutant protein expression. Our study indicates that premature termination mutations very early in ARX lead to reinitiation of translation to produce N-terminally truncated protein at markedly reduced levels of expression. We conclude that even low levels of N-terminally truncated ARX is sufficient to improve the patient's phenotype compared with the severe phenotype of XLAG that includes malformations of the brain and genitalia normally seen in complete loss-of-function mutations in ARX.
Collapse
Affiliation(s)
- Ching Moey
- Department of Paediatrics, School of Peadiatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Scott Topper
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mary Karn
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Jorge Vidaurre
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Peadiatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Marques I, Sá MJ, Soares G, Mota MDC, Pinheiro C, Aguiar L, Amado M, Soares C, Calado A, Dias P, Sousa AB, Fortuna AM, Santos R, Howell KB, Ryan MM, Leventer RJ, Sachdev R, Catford R, Friend K, Mattiske TR, Shoubridge C, Jorge P. Unraveling the pathogenesis of ARX polyalanine tract variants using a clinical and molecular interfacing approach. Mol Genet Genomic Med 2015; 3:203-14. [PMID: 26029707 PMCID: PMC4444162 DOI: 10.1002/mgg3.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
The Aristaless-related homeobox (ARX) gene is implicated in intellectual disability with the most frequent pathogenic mutations leading to expansions of the first two polyalanine tracts. Here, we describe analysis of the ARX gene outlining the approaches in the Australian and Portuguese setting, using an integrated clinical and molecular strategy. We report variants in the ARX gene detected in 19 patients belonging to 17 families. Seven pathogenic variants, being expansion mutations in both polyalanine tract 1 and tract 2, were identifyed, including a novel mutation in polyalanine tract 1 that expands the first tract to 20 alanines. This precise number of alanines is sufficient to cause pathogenicity when expanded in polyalanine tract 2. Five cases presented a probably non-pathogenic variant, including the novel HGVS: c.441_455del, classified as unlikely disease causing, consistent with reports that suggest that in frame deletions in polyalanine stretches of ARX rarely cause intellectual disability. In addition, we identified five cases with a variant of unclear pathogenic significance. Owing to the inconsistent ARX variants description, publications were reviewed and ARX variant classifications were standardized and detailed unambiguously according to recommendations of the Human Genome Variation Society. In the absence of a pathognomonic clinical feature, we propose that molecular analysis of the ARX gene should be included in routine diagnostic practice in individuals with either nonsyndromic or syndromic intellectual disability. A definitive diagnosis of ARX-related disorders is crucial for an adequate clinical follow-up and accurate genetic counseling of at-risk family members.
Collapse
Affiliation(s)
- Isabel Marques
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Maria João Sá
- Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Gabriela Soares
- Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal
| | - Maria do Céu Mota
- Department of Pediatrics, Centro Hospitalar do Porto, EPE Porto, Portugal
| | - Carla Pinheiro
- Department of Pediatrics, Hospital Santa Maria Maior, EPE Barcelos, Portugal
| | - Lisa Aguiar
- Department of Pediatrics, Hospital Distrital de Santarém, EPE Santarém, Portugal
| | - Marta Amado
- Department of Pediatrics, Unidade Hospitalar de Portimão, Centro Hospitalar do Algarve Portimão, Portugal
| | - Christina Soares
- Department of Pediatrics, Unidade Hospitalar de Portimão, Centro Hospitalar do Algarve Portimão, Portugal
| | - Angelina Calado
- Department of Pediatrics, Unidade Hospitalar de Portimão, Centro Hospitalar do Algarve Portimão, Portugal
| | - Patrícia Dias
- Department of Genetics, Hospital de Santa Maria Lisboa, Portugal
| | - Ana Berta Sousa
- Department of Genetics, Hospital de Santa Maria Lisboa, Portugal
| | - Ana Maria Fortuna
- Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Katherine B Howell
- Department of Neurology, Royal Children's Hospital Melbourne, Victoria, Australia ; Murdoch Childrens Research Institute Melbourne, Victoria, Australia, 3052 ; University of Melbourne Department of Paediatrics Melbourne, Victoria, Australia, 3052
| | - Monique M Ryan
- Department of Neurology, Royal Children's Hospital Melbourne, Victoria, Australia ; Murdoch Childrens Research Institute Melbourne, Victoria, Australia, 3052 ; University of Melbourne Department of Paediatrics Melbourne, Victoria, Australia, 3052
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital Melbourne, Victoria, Australia ; Murdoch Childrens Research Institute Melbourne, Victoria, Australia, 3052 ; University of Melbourne Department of Paediatrics Melbourne, Victoria, Australia, 3052
| | - Rani Sachdev
- Department of Medical Genetics, Sydney Children's Hospital High St., Randwick, New South Wales, 2031, Australia
| | - Rachael Catford
- SA Pathology at the Women's and Children's Hospital North Adelaide, South Australia, Australia
| | - Kathryn Friend
- SA Pathology at the Women's and Children's Hospital North Adelaide, South Australia, Australia
| | - Tessa R Mattiske
- Department of Paediatrics, University of Adelaide Adelaide, South Australia, 5006, Australia ; Robinson Research Institute, University of Adelaide Adelaide, South Australia, 5006, Australia
| | - Cheryl Shoubridge
- Department of Paediatrics, University of Adelaide Adelaide, South Australia, 5006, Australia ; Robinson Research Institute, University of Adelaide Adelaide, South Australia, 5006, Australia
| | - Paula Jorge
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| |
Collapse
|
5
|
Polyalanine tract disorders and neurocognitive phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 769:185-203. [PMID: 23560312 DOI: 10.1007/978-1-4614-5434-2_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Expansion of polyalanine tracts cause at least 9 inherited human diseases. Eight of these nine diseases are due to expansions in transcription factors and give rise to congenital disorders, many with neurocognitive phenotypes. Disease-causing expansions vary in length dependingupon the gene in question, with the severity of the associated clinical phenotype generally increasing with length of the polyalanine tract. The past decade has seen considerable progress in the understanding on how these mutations may arise and the functional effect of expanded polyalanine tracts on the resulting protein. Despite this progress, the pathogenic mechanism of expanded polyalanine tracts contributing to the associated disease states remains poorly understood. Gaining insights into the mechanisms that underlie the pathogenesis of different expanded polyalanine tract mutations will be a necessary step on the path to the design of potential treatment strategies for the associated diseases.
Collapse
|
6
|
Poeta L, Fusco F, Drongitis D, Shoubridge C, Manganelli G, Filosa S, Paciolla M, Courtney M, Collombat P, Lioi M, Gecz J, Ursini M, Miano M. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX. Am J Hum Genet 2013; 92:114-25. [PMID: 23246292 DOI: 10.1016/j.ajhg.2012.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/07/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022] Open
Abstract
Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C (KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downregulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the KDM5C content during in vitro neuronal differentiation, which inversely correlated with an increase in H3K4me3 signal. We established that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via chromatin remodeling.
Collapse
|
7
|
Abstract
The authors report detailed clinical and developmental assessment of 3 brothers who were found to carry a novel mutation in the ARX gene associated with a relatively mild phenotype of static global developmental delay and early hand preference. The decision of when to initiate specialized genetic testing for patients with apparently isolated developmental delay remains controversial, and this report of 3 brothers who presented with early hand preference and transient contralateral weakness may assist clinicians in prioritizing investigations in patients with a similar presentation.
Collapse
|
8
|
Is there a Mendelian transmission ratio distortion of the c.429_452dup(24bp) polyalanine tract ARX mutation? Eur J Hum Genet 2012; 20:1311-4. [PMID: 22490986 DOI: 10.1038/ejhg.2012.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Intellectual disability is common. Aristaless-related homeobox (ARX) gene is one of the most frequently mutated and pleiotropic genes, implicated in 10 different phenotypes. More than half of ~100 reported cases with ARX mutations are due to a recurrent duplication of 24 bp, c.429_452dup, which leads to polyalanine tract expansion. The excess of affected males among the offspring of the obligate carrier females raised the possibility of transmission ratio distortion for the c.429_452dup mutation. We found a significant deviation from the expected Mendelian 1:1 ratio of transmission in favour of the c.429_452dup ARX mutation. We hypothesise that the preferential transmission of the c.429_452dup mutation may be due to asymmetry of meiosis in the oocyte. Our findings may have implications for genetic counselling of families segregating the c.429_452dup mutation and allude to putative role of ARX in oocyte biology.
Collapse
|
9
|
Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol 2012; 46:24-31. [PMID: 22196487 DOI: 10.1016/j.pediatrneurol.2011.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/24/2011] [Indexed: 12/20/2022]
Abstract
Early-onset epileptic encephalopathies are severe disorders in which cognitive, sensory, and motor development is impaired by recurrent clinical seizures or prominent interictal epileptiform discharges during the neonatal or early infantile periods. They include Ohtahara syndrome, early myoclonic epileptic encephalopathy, West syndrome, Dravet syndrome, and other diseases, e.g., X-linked myoclonic seizures, spasticity and intellectual disability syndrome, idiopathic infantile epileptic-dyskinetic encephalopathy, epilepsy and mental retardation limited to females, and severe infantile multifocal epilepsy. We summarize recent updates on the genes and related clinical syndromes involved in the pathogenesis of early-onset epileptic encephalopathies: Aristaless-related homeobox (ARX), cyclin-dependent kinase-like 5 (CDKL5), syntaxin-binding protein 1 (STXBP1), solute carrier family 25 member 22 (SLC25A22), nonerythrocytic α-spectrin-1 (SPTAN1), phospholipase Cβ1 (PLCβ1), membrane-associated guanylate kinase inverted-2 (MAGI2), polynucleotide kinase 3'-phosphatase (PNKP), sodium channel neuronal type 1α subunit (SCN1A), protocadherin 19 (PCDH19), and pyridoxamine 5-prime-phosphate oxidase (PNPO).
Collapse
Affiliation(s)
- Mario Mastrangelo
- Division of Child Neurology, Department of Pediatrics, Child Neurology, and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
10
|
Fullston T, Finnis M, Hackett A, Hodgson B, Brueton L, Baynam G, Norman A, Reish O, Shoubridge C, Gecz J. Screening and cell-based assessment of mutations in the Aristaless-related homeobox (ARX) gene. Clin Genet 2011; 80:510-22. [PMID: 21496008 DOI: 10.1111/j.1399-0004.2011.01685.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ARX mutations cause a diverse spectrum of human disorders, ranging from severe brain and genital malformations to non-syndromic intellectual disability (ID). ARX is a transcription factor with multiple domains that include four polyalanine (pA) tracts, the first two of which are frequently expanded by mutations. We progressively screened DNA samples from 613 individuals with ID initially for the most frequent ARX mutations (c.304ins(GCG)(7)'expansion' of pA1 and c.429_452dup 'dup24bp' of pA2). Five hundred samples without pA1 or pA2 mutations had the entire ARX ORF screened by single stranded polymorphism conformation (SSCP) and/or denaturing high pressure liquid chromatography (dHPLC) analysis. Overall, eight families with six mutations in ARX were identified (1.31%): five duplication mutations in pA2 (0.82%) with three new clinical reports of families with the dup24bp and two duplications larger than the dup24bp mutation discovered (dup27bp, dup33bp); and three point mutations (0.6%), including one novel mutation in the homeodomain (c.1074G>T). Four ultraconserved regions distal to ARX (uc466-469) were also screened in a subset of 94 patients, with three unique nucleotide changes identified in two (uc466, uc467). The subcellular localization of full length ARX proteins was assessed for 11 variants. Protein mislocalization increased as a function of pA2 tract length and phenotypic severity, as has been previously suggested for pA1. Similarly, protein mislocalization of the homeodomain mutations also correlated with clinical severity, suggesting an emerging genotype vs cellular phenotype correlation.
Collapse
Affiliation(s)
- T Fullston
- Neurogenetics Laboratory, Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Low amounts of PHOX2B expanded alleles in asymptomatic parents suggest unsuspected recurrence risk in congenital central hypoventilation syndrome. J Mol Med (Berl) 2011; 89:505-13. [DOI: 10.1007/s00109-010-0718-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/22/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
|
12
|
Shoubridge C, Fullston T, Gécz J. ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 2010; 31:889-900. [PMID: 20506206 DOI: 10.1002/humu.21288] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is one of the most frequently mutated genes in a spectrum of X-chromosome phenotypes with intellectual disability (ID) as their cardinal feature. To date, close to 100 families and isolated cases have been reported to carry 44 different mutations, the majority of these (59%) being a result of polyalanine tract expansions. At least 10 well-defined clinical entities, including Ohtahara, Partington, and Proud syndromes, X-linked infantile spasms, X-linked lissencephaly with ambiguous genitalia, X-linked myoclonic epilepsy and nonsyndromic intellectual disability have been ascertained from among the patients with ARX mutations. The striking intra- and interfamilial pleiotropy together with genetic heterogeneity (same clinical entities associated with different ARX mutations) are becoming a hallmark of ARX mutations. Although males are predominantly affected, some mutations associated with malformation phenotypes in males also show a phenotype in carrier females. Recent progress in the study of the effect of ARX mutations through sophisticated animal (mice) and cellular models begins to provide crucial insights into the molecular function of ARX and associated molecular pathology, thus guiding future inquiries into therapeutic interventions.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Department of Genetics and Molecular Pathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia.
| | | | | |
Collapse
|
13
|
Friocourt G, Parnavelas JG. Mutations in ARX Result in Several Defects Involving GABAergic Neurons. Front Cell Neurosci 2010; 4:4. [PMID: 20300201 PMCID: PMC2841486 DOI: 10.3389/fncel.2010.00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/24/2010] [Indexed: 01/15/2023] Open
Abstract
Genetic investigations of X-linked mental retardation have demonstrated the implication of ARX in a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities, but with associated features of dystonia and epilepsy. These investigations have in recent years directed attention to the role of this gene in brain development. Analysis of its spatio-temporal localization profile revealed expression in telencephalic structures at all stages of development, mainly restricted to populations of GABA-containing neurons. Furthermore, studies of the effects of ARX loss of function either in humans or in lines of mutant mice revealed varying defects, suggesting multiple roles of this gene during development. In particular, Arx has been shown to contribute to almost all fundamental processes of brain development: patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. In this review, we will present and discuss recent findings concerning the role of ARX in brain development and how this information will be useful to better understand the pathophysiological mechanisms of mental retardation and epilepsy associated with ARX mutations.
Collapse
Affiliation(s)
- Gaëlle Friocourt
- U613, Institut National de la Santé et de la Recherche Médicale Brest, France
| | | |
Collapse
|