1
|
Zhu T, Shen Y, Sun Z, Han X, Wei X, Li W, Lu C, Cheng T, Zou X, Li H, Cao Z, Gao H, Ma X, Luo M, Sui R. Clinical and Molecular Features of a Chinese Cohort With Syndromic and Nonsyndromic Retinal Dystrophies Related to the CEP290 Gene. Am J Ophthalmol 2023; 248:96-106. [PMID: 36493848 DOI: 10.1016/j.ajo.2022.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To reveal the clinical and genetic features of 54 Chinese pedigrees with syndromic or nonsyndromic retinal dystrophies related to CEP290 and to explore the genotype-phenotype correlation. DESIGN Retrospective cohort study. METHODS Patients diagnosed with nonsyndromic inherited retinal dystrophy (IRD) or syndromic ciliopathy (SCP) were enrolled. We identified 61 patients from 54 families carrying biallelic pathogenic CEP290 variants using next-generation sequencing, Sanger sequencing, and co-segregation validation. Genotype-phenotype correlation was evaluated. RESULTS This study included 37 IRD patients from 32 families and 24 patients with SCP from 22 pedigrees. Four retinal dystrophy phenotypes were confirmed: Leber congenital amaurosis (LCA, 46/61), early-onset severe retinal dystrophy (EOSRD, 4/61), retinitis pigmentosa (RP, 10/61), and cone-rod dystrophy (CORD, 1/61). The SCP phenotypes included Joubert syndrome (JS) (23/24) and Bardet-Biedl syndrome (BBS) (1/24). We detected 73 different CEP290 variants, of which 33 (45.2%) were not previously reported. Two novel copy number variations (CNVs) and 1 novel pathogenic synonymous change were identified. The most recurrent alterations in the IRD and SCP were p.Q123* (6/64, 9.4%) and p.I556Ffs*17 (10/44, 22.7%), respectively. IRD patients carried more stop-gain alleles (25/64, 39.1%), whereas SCP patients carried more frameshift alleles (23/44, 52.3%). CONCLUSIONS LCA was the most common retinal dystrophy phenotype, and JS was the most prevalent syndrome in CEP290 patients; RP/CORD and BBS may be present in early adulthood. The hot spot variants and distribution of genotypes were distinct between IRD and SCP. Our study expands the CEP290 variant spectrum and enhances the current knowledge of CEP290 heterogeneity.
Collapse
Affiliation(s)
- Tian Zhu
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Yue Shen
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Zixi Sun
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xiaoxu Han
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xing Wei
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Wuyi Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Chao Lu
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Tingting Cheng
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xuan Zou
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Hui Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Zongfu Cao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Huafang Gao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xu Ma
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Minna Luo
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China.
| | - Ruifang Sui
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.).
| |
Collapse
|
2
|
Manti S, Gitto E, Ceravolo I, Mancuso A, Ceravolo A, Salpietro A, Farello G, Chimenz R, Iapadre G, Battaglia F, Cuppari C. A Brief Focus on Joubert Syndrome and Related Acute Complications. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:003-007. [DOI: 10.1055/s-0042-1760240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) and related disorders are a group of congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign, a complex midbrain–hindbrain malformation. Moreover, JS may be associated with multiorgan involvement, mainly nephronophthisis, hepatic fibrosis, retinal dystrophy, and other abnormalities with both inter- and intra-familial variability. Therefore, these patients should be followed by both diagnostic protocol and multidisciplinary approach to assess multiorgan involvement. Here, we briefly summarize the possible complications in patients with JS.
Collapse
Affiliation(s)
- Sara Manti
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Francesco Battaglia
- Department of Biomedical Sciences and Advanced Therapies, Orthopaedic Clinic, University of Ferrara, Ferrara, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
3
|
Cuppari C, Ceravolo I, Mancuso A, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo MD. Joubert Syndrome: Diagnostic Evaluation and Follow-up. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:053-057. [DOI: 10.1055/s-0042-1759532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe follow-up of a child with genetic syndrome is necessarily multidisciplinary because of the multiplicity of problems and calls for close collaboration between different specialists. The primary objective is the total care of the child and his family, regardless of the rarity and complexity of the disease, to obtain the highest possible degree of mental and physical health and autonomy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
4
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:023-032. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
5
|
Cuppari C, Salpietro A, Ceravolo I, Iapadre G, Fusco M, Sallemi A, Mancuso A, Farello G, Ceravolo MD. Ciliopathies: Genetic Counseling. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:041-043. [DOI: 10.1055/s-0042-1759515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractJoubert syndrome (JS) follows autosomal recessive inheritance, with rare X-linked recessive cases. The disease is genetically heterogeneous with neurological features associated with multiorgan involvement (e.g., retinal dystrophy, nephronophthisis, hepatic fibrosis, and polydactyly). The incidence of JS and related disorders is between 1/80,000 and 1/100,000 live births. Many causative genes have been identified, all encoding for proteins of the cilium or the centrosome, making the JS part of a group of diseases called “ciliopathies.” The identification of the molecular defect in couples at risk is allowed by prenatal genetic testing, whereas fetal ultrasound and brain neuroimaging are informative in the first and second trimester of pregnancy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Coppito, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
6
|
Ceravolo I, Granata F, Gitto E, Iapadre G, Chimenz R, Giannitto N, Mancuso A, Ceravolo MD, Macchia TL, Rissotto F, Farello G, Cuppari C. Ophthalmological Findings in Joubert Syndrome and Related Disorders. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:068-072. [DOI: 10.1055/s-0042-1759536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare genetic condition characterized by congenital malformation of the mid-hindbrain, cerebellar ataxia, hypotonia, oculomotor apraxia, hypoplasia of the cerebellar vermis resulting in breathing defects, ataxia, and delayed development. Ophthalmological examination reveals eye involvement with nystagmus and retinal defects. Genetic counseling is important for the prevention of new cases. Great advances have been made in recent years. Management is symptomatic and multidisciplinary. In the present review, we discussed the most frequent ophthalmological anomalies associated with JS and speculated on the role of ciliary physiology in eye development.
Collapse
Affiliation(s)
- Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Nino Giannitto
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Tommaso La Macchia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federico Rissotto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
7
|
Conti G, Farello G, Ceravolo MD, Fusco M, Cuppari C, Mancuso A, Ceravolo I, David E, Iapadre G, Scorrano G, Fiorile MF, Chimenz R. Joubert Syndrome and Renal Implication. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:049-052. [DOI: 10.1055/s-0042-1759541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractTwenty-five to 30% of patients with Joubert syndrome (JS) have renal involvement. Two forms of renal disease (RD) have traditionally been described. The less common form is the Dekaban–Arima syndrome, a JS RD that includes congenital blindness and occasional encephalocele. The other, more common RD is juvenile nephronophthisis (NPHP), that presents a progressive interstitial fibrosis, associated with small cysts at the corticomedullary junction. NPHP is the most frequent genetic cause for end-stage RD in the first three decades of life. Symptoms start at approximately 6 years of age with urine concentrating defects, polydipsia, polyuria, and secondary enuresis.
Collapse
Affiliation(s)
- Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | | | | | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
8
|
Stroscio G, Cuppari C, Ceravolo MD, Salpietro A, Battaglia F, Sallemi A, Fusco M, Ceravolo A, Iapadre G, Calì E, Impollonia D, Granata F. Radiological Features of Joubert's Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disorder. All patients affected by this syndrome presented a characteristic picture of cranial fossa malformations, called “molar tooth sign.” This sign is defined by the presence in axial section at the level of a deck/midbrain, of hypo/dysplasia of the cerebellar vermis, abnormally deep interpeduncular fossa and horizontalized thickened and elongated superior cerebellar peduncles. Although “molar tooth sign” is peculiar of JS, other radiological findings have been also reported in these patients. Here, the authors briefly assumed the principal magnetic resonance imaging findings of JS.
Collapse
Affiliation(s)
- Giovanni Stroscio
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Francesco Battaglia
- Orthopaedic and Traumatology Department, “S. Anna” Hospital, University of Ferrara, Ferrara, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Daniela Impollonia
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Francesca Granata
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| |
Collapse
|
9
|
Minella AL, Narfström Wiechel K, Petersen-Jones SM. Alternative splicing in CEP290 mutant cats results in a milder phenotype than LCA CEP290 patients. Vet Ophthalmol 2023; 26:4-11. [PMID: 36495011 PMCID: PMC10107307 DOI: 10.1111/vop.13052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The rdAc cat has an intronic mutation in the centrosomal 290 kDa (CEP290) gene resulting in a frameshift and a premature stop codon (c.6960 + 9 T > G, p.Ile2321AlafsTer3) predicted to truncate the protein by 157 amino acids. CEP290 mutations in human patients cause a range or phenotypes including syndromic conditions and severe childhood loss of vision while the rdAc cat has a milder phenotype. We sought to further characterize the effect of rdAc mutation on CEP290 expression. METHODS TaqMan quantitative real-time polymerase chain reaction assays were used to compare wildtype and truncated transcript levels. Relative protein abundance was analyzed by Western blot. Immunohistochemistry (IHC) was performed to detect CEP290 protein. RESULTS CEP290 mutant cats show low-level (17.4% of wildtype cats) use of the wildtype splice site and usage of the mutant splice site. Western analysis shows retina from cats homozygous for the mutation has CEP290 protein that likely comprises a combination of both wildtype and truncated protein. IHC detects CEP290 in affected and control retina labeling the region of the interconnecting cilium. CONCLUSIONS The comparably milder phenotype of CEP290 mutant cats is likely due to the retained production of some full-length CEP290 protein with possible functional contributions from presence of truncated protein.
Collapse
Affiliation(s)
- Andrea L Minella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Kristina Narfström Wiechel
- Department of Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Mssouri, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
11
|
Peng M, Han S, Sun J, He X, Lv Y, Yang L. Evaluation of novel compound variants of CEP290 in prenatally suspected case of Meckel syndrome through whole exome sequencing. Mol Genet Genomic Med 2022; 10:e1935. [PMID: 35352487 PMCID: PMC9034663 DOI: 10.1002/mgg3.1935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Meckel syndrome (MKS) is a fatal disease characterized by multisystem fibrosis during the prenatal or perinatal period. It has an autosomal recessive genetic pattern and is characterized by meningo occipital encephalocele, polycystic kidney dysplasia, polydactyly, and hepatobiliary ductal plate malformation. Germline variations in CEP290 have been shown to cause MKS4. Methods In this study, a 23‐year‐old Chinese woman who was 18 weeks pregnant was examined. The pregnancy was terminated due to occipital meningocele and enlarged cystic dysplastic kidney revealed by ultrasonography. In addition, the patient had a history of adverse pregnancy whereby the fetus presented with double kidney enlargement. Karyotype analysis and chromosomal microarray examination (CMA) were carried out using amniotic fluid samples. Whole exome sequencing (WES) was performed using tissue specimens of the aborted fetus. Results Karyotype and CMA analyses showed normal results. However, compound heterozygous mutations of CEP290 c.3175dup and CEP290 c.1201dup were detected through WES. CEP290 c.1201dup is a novel heterozygous mutation of CEP290 that has not been reported previously. Conclusions The findings of this study provide information on the correlation between MKS phenotype and genotype in CEP290. In addition, these findings indicate that WES is an effective method for detecting genetic causes of multiple structural defects especially those showing normal karyotype and CMA results.
Collapse
Affiliation(s)
- Meilian Peng
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuai Han
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Juan Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaodong He
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yaer Lv
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Liwei Yang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
12
|
Abstract
Inherited retinal diseases (IRDs) are an important cause of blindness worldwide. Over 270 genes have been associated with IRD. Genetic testing can determine the cause of the clinical disease in the majority of patients. However, at least 25-50% of patients with clinical diagnosis of IRD remain unsolved even after whole genome sequencing. Animal models of IRD can be useful for expanding the set of established IRD genes, to gain biological understanding of the function of these genes in the retina, and to test advanced therapeutics prior to human clinical trials. In this chapter some small and large animal models of IRD are discussed including some of the advantages and limitations of each for various forms of retinopathy.
Collapse
|
13
|
Mary L, Chennen K, Stoetzel C, Antin M, Leuvrey A, Nourisson E, Alanio-Detton E, Antal MC, Attié-Bitach T, Bouvagnet P, Bouvier R, Buenerd A, Clémenson A, Devisme L, Gasser B, Gilbert-Dussardier B, Guimiot F, Khau Van Kien P, Leroy B, Loget P, Martinovic J, Pelluard F, Perez MJ, Petit F, Pinson L, Rooryck-Thambo C, Poch O, Dollfus H, Schaefer E, Muller J. Bardet-Biedl syndrome: Antenatal presentation of forty-five fetuses with biallelic pathogenic variants in known Bardet-Biedl syndrome genes. Clin Genet 2020; 95:384-397. [PMID: 30614526 DOI: 10.1111/cge.13500] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
Abstract
Bardet-Biedl syndrome (BBS) is an emblematic ciliopathy associated with retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, hypogonadism and renal dysfunction. Before birth, enlarged/cystic kidneys as well as polydactyly are the hallmark signs of BBS to consider in absence of familial history. However, these findings are not specific to BBS, raising the problem of differential diagnoses and prognosis. Molecular diagnosis during pregnancies remains a timely challenge for this heterogeneous disease (22 known genes). We report here the largest cohort of BBS fetuses to better characterize the antenatal presentation. Prenatal ultrasound (US) and/or autopsy data from 74 fetuses with putative BBS diagnosis were collected out of which molecular diagnosis was established in 51 cases, mainly in BBS genes (45 cases) following the classical gene distribution, but also in other ciliopathy genes (6 cases). Based on this, an updated diagnostic decision tree is proposed. No genotype/phenotype correlation could be established but postaxial polydactyly (82%) and renal cysts (78%) were the most prevalent symptoms. However, autopsy revealed polydactyly that was missed by prenatal US in 55% of the cases. Polydactyly must be carefully looked for in pregnancies with apparently isolated renal anomalies in fetuses.
Collapse
Affiliation(s)
- Laura Mary
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| | - Kirsley Chennen
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Complex Systems and Translational Bioinformatics, ICube, University of Strasbourg, CNRS, Illkirch, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| | - Manuela Antin
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Leuvrey
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elisabeth Alanio-Detton
- Gynécologie-obstétrique, Centre de Dépistage Anténatal, Hôpital Maison-Blanche, Reims, France
| | - Maria C Antal
- Institut d'Histologie, Icube, Université de Strasbourg, Strasbourg, France.,Service de Pathologie, UF6349 Fœtopathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tania Attié-Bitach
- INSERM U1163, Institut IMAGINE, Université Paris Descartes, Paris, France.,Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Bouvagnet
- Laboratoire de Cardiogénétique, Malformations Cardiaques Congénitale, Hôpitaux Civils de Lyon, France
| | - Raymonde Bouvier
- Département de Pathologie, Centre Hospitalier Est, Hôpitaux Civils de Lyon, Lyon, France
| | - Annie Buenerd
- Département de Pathologie, Centre Hospitalier Est, Hôpitaux Civils de Lyon, Lyon, France
| | - Alix Clémenson
- Service d'Anatomie et Cytologie Pathologiques, CHU de Saint-Etienne, Saint-Étienne, France
| | - Louise Devisme
- Institut d'Anatomo-Pathologie, Centre de Biologie Pathologie, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Bernard Gasser
- Laboratoire de Pathologie, GHR Mulhouse-Sud Alsace, Mulhouse, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,EA3808 - NEUVACOD, Université de Poitiers, Poitiers, France
| | - Fabien Guimiot
- Unité Fonctionnelle de Fœtopathologie, Département de Génétique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Khau Van Kien
- Unité de Génétique Médicale et Cytogénétique, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Brigitte Leroy
- Service d'Anatomie Pathologique, CHI Poissy Saint Germain-en-Laye, Poissy, France
| | - Philippe Loget
- Service d'Anatomie Pathologique, Hôpital Pontchaillou, Université Rennes 1, Rennes, France
| | - Jelena Martinovic
- Unité de Fœtopathologie, Hôpital Antoine Béclère, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Fanny Pelluard
- Service d'Anatomie-Cytologie Pathologique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Marie-Josée Perez
- Unité de Fœtopathologie, Service de Génétique Médicale, Centre Hospitalier Universitaire, Montpellier, France
| | - Florence Petit
- Clinique de Génétique Guy Fontaine, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Lucile Pinson
- Département de Génétique Médicale, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Caroline Rooryck-Thambo
- Université Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube, University of Strasbourg, CNRS, Illkirch, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre des Affections Rares en Génétique Ophtalmologique, FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Wang X, Zhang Z, Zhang X, Shen Y, Liu H. Novel biallelic loss-of-function variants in CEP290 cause Joubert syndrome in two siblings. Hum Genomics 2020; 14:26. [PMID: 32600475 PMCID: PMC7325267 DOI: 10.1186/s40246-020-00274-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/11/2020] [Indexed: 12/03/2022] Open
Abstract
Background Joubert syndrome (JS) is a rare genetic disorder, which can be defined by brain stem malformation, cerebellar vermis hypoplasia, and consequent “molar tooth sign” (MTS). JS always shares variety of phenotypes in development defects. With the development of next-generation sequencing, dozens of causative genes have been identified to JS so far. Here, we investigated two male siblings with JS and uncovered a novel pathogenesis through combined methods. Results The siblings shared similar features of nystagmus, disorders of intellectual development, typical MTS, and abnormal morphology in fourth ventricle. Whole-exome sequencing (WES) and chromosome comparative genomic hybridization (CGH) were then performed on the proband. Strikingly, a maternal inherited nonsense variant (NM_025114.3: c.5953G>T [p.E1985*]) in CEP290 gene and a paternal inherited deletion in 12q21.32 including exons 1 to 10 of CEP290 gene were identified in the two affected siblings. We further confirmed the two variants by in vitro experiments: quantitative PCR and PCR sequencing. Conclusions In this study, we first reported a novel causative mechanism of Joubert syndrome: a copy number variation (CNV) combined with a single-nucleotide variant in CEP290 gene, which can be helpful in the genetic diagnosis of this disease.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongqian Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Xu K, Xie Y, Sun T, Zhang X, Chen C, Li Y. Genetic and clinical findings in a Chinese cohort with Leber congenital amaurosis and early onset severe retinal dystrophy. Br J Ophthalmol 2019; 104:932-937. [PMID: 31630094 DOI: 10.1136/bjophthalmol-2019-314281] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/01/2019] [Accepted: 09/29/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) and early onset severe retinal dystrophy (EOSRD) are clinically and genetically heterogeneous inherited retinal disorders that cause severe visual impairment in children. The objective of this study was to describe the mutation profile and phenotypic characteristics in Chinese patients with LCA or EOSRD. METHODS Retrospective consecutive case series (2010-2017) study was performed in 148 probands (91 with LCA and 57 with EOSRD). All patients underwent ophthalmic evaluation. Mutations were revealed using targeted next-generation sequencing, followed by Sanger DNA-sequencing and real-time quantitative PCR analysis. RESULTS We identified two diseasing-causing mutations in 88 unrelated patients, heterozygous autosomal dominant mutations in 11 probands and X-linked hemizygous mutations in 11 patients, for an overall mutation detection rate of 74.3% (110/148). We detected 158 different disease-causing mutations involving 14 LCA genes, 16 retinitis pigmentosa or cone-rod dystrophy genes and 3 syndromic retinal dystrophy genes. Of these 158 mutations, 98 were novel. The most common mutation was p.Q141X of AIPL1, with a gene-specific allele frequency of 60%. The first five most frequently mutated genes were AIPL1 (11.0%), RPGRIP1 (8.8%) and CEP290, GUCY2D and RPE65 (each 7.7%) in the patients with LCA and RPGR (12.3%), CRB1 (10.5%), RPE65 (10.5%), RDH12 (7.0%) and RP2 (5.3%) in the patients with EOSRD. CONCLUSIONS Our results revealed that the mutation spectrum of patients with LCA differs from that of the patients with EOSRD and established the configuration of the mutation frequencies for each LCA gene in Chinese patients, thereby providing essential information for future genetic counselling and gene therapy.
Collapse
Affiliation(s)
- Ke Xu
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tengyang Sun
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Zhang
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chunjie Chen
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Gabriel GC, Lo CW. Novel insights into the genetic landscape of congenital heart disease with systems genetics. PROGRESS IN PEDIATRIC CARDIOLOGY 2019; 54. [PMID: 34404969 DOI: 10.1016/j.ppedcard.2019.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We recently conducted a large-scale mouse mutagenesis screen and uncovered a central role for cilia in the pathogenesis of congenital heart disease (CHD). Though our screen was phenotype based, most of the genes recovered were cilia-related, including genes encoding proteins important for ciliogenesis, cilia-transduced cell signaling, and vesicular trafficking. Also unexpected, many of the cilia related genes recovered are known direct protein-protein interactors, even though each gene was recovered independently in unrelated mouse lines. These findings suggest a cilia-based protein-protein interactome network may provide the context for congenital heart disease pathogenesis. This could explain the incomplete penetrance and variable expressivity of human CHD, and account for its complex non-Mendelian etiology. Supporting these findings in mice, a preponderance of cilia and cilia related cell signaling genes were observed among de novo pathogenic variants identified in a CHD patient cohort. Further clinical relevance unfolded with the observation of a high prevalence of respiratory cilia dysfunction in CHD patients. This was associated with increased postsurgical respiratory complications. Together these findings highlight the importance of cilia in CHD pathogenesis and suggest possible clinical translation with instituting pulmonary therapy to improve outcome for CHD patients undergoing congenital cardiac surgeries.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States of America
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States of America
| |
Collapse
|
17
|
Firat-Karalar EN. The ciliopathy gene product Cep290 is required for primary cilium formation and microtubule network organization. Turk J Biol 2018; 42:371-381. [PMID: 30930621 DOI: 10.3906/biy-1805-25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium, and the centriolar satellites, which together function in key cellular processes including signaling. Defective assembly, maintenance, and function of the centrosome/ cilium complex cause the human genetic diseases known as ciliopathies, which are characterized by a multitude of developmental syndromes including retinal degeneration and kidney cysts. The molecular mechanisms underlying pathogenesis in ciliopathies remain poorly understood, which requires structural and functional characterization of the mutated ciliopathy proteins at the cellular level. To this end, we elucidated the function and regulation of Cep290, which is the most frequently mutated gene in ciliopathies and importantly its functions remain poorly understood. First, we generated Cep290-null cells using the CRISPR/Cas9 genome editing approach. Using functional assays, we showed that Cep290-null cells do not ciliate and that they have defects in centriolar satellites dynamics and interphase microtubule organization. The centriolar satellites were tightly clustered around the centrosome in Cep290-null cells, and the interphase microtubule network lost its radial organization. Our results provide phenotypic insight into the disease mechanisms of Cep290 ciliopathy mutations and also the tools for studying genotype/phenotype relationships in ciliopathies.
Collapse
Affiliation(s)
- Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University , İstanbul , Turkey
| |
Collapse
|
18
|
Srivastava S, Ramsbottom SA, Molinari E, Alkanderi S, Filby A, White K, Henry C, Saunier S, Miles CG, Sayer JA. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum Mol Genet 2018; 26:4657-4667. [PMID: 28973549 PMCID: PMC5886250 DOI: 10.1093/hmg/ddx347] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Joubert syndrome (JBTS) is the archetypal ciliopathy caused by mutation of genes encoding ciliary proteins leading to multi-system phenotypes, including a cerebello-retinal-renal syndrome. JBTS is genetically heterogeneous, however mutations in CEP290 are a common underlying cause. The renal manifestation of JBTS is a juvenile-onset cystic kidney disease, known as nephronophthisis, typically progressing to end-stage renal failure within the first two decades of life, thus providing a potential window for therapeutic intervention. In order to increase understanding of JBTS and its associated kidney disease and to explore potential treatments, we conducted a comprehensive analysis of primary renal epithelial cells directly isolated from patient urine (human urine-derived renal epithelial cells, hURECs). We demonstrate that hURECs from a JBTS patient with renal disease have elongated and disorganized primary cilia and that this ciliary phenotype is specifically associated with an absence of CEP290 protein. Treatment with the Sonic hedgehog (Shh) pathway agonist purmorphamine or cyclin-dependent kinase inhibition (using roscovitine and siRNA directed towards cyclin-dependent kinase 5) ameliorated the cilia phenotype. In addition, purmorphamine treatment was shown to reduce cyclin-dependent kinase 5 in patient cells, suggesting a convergence of these signalling pathways. To our knowledge, this is the most extensive analysis of primary renal epithelial cells from JBTS patients to date. It demonstrates the feasibility and power of this approach to directly assess the consequences of patient-specific mutations in a physiologically relevant context and a previously unrecognized convergence of Shh agonism and cyclin-dependent kinase inhibition as potential therapeutic targets.
Collapse
Affiliation(s)
- Shalabh Srivastava
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Simon A Ramsbottom
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Elisa Molinari
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sumaya Alkanderi
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Andrew Filby
- Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, UK
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charline Henry
- EM Research Services, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Sophie Saunier
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Colin G Miles
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John A Sayer
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
19
|
Minella AL, Occelli LM, Narfström K, Petersen-Jones SM. Central retinal preservation in rdAc cats. Vet Ophthalmol 2017; 21:224-232. [PMID: 28856832 DOI: 10.1111/vop.12495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Children with Leber congenital amaurosis (LCA) due to CEP290 mutations show characteristic macular preservation. Spectral domain-optical coherence tomography (SD-OCT) is a noninvasive technique to investigate retinal structural changes. Loss of integrity of the ellipsoid zone (EZ) on OCT in people with retinal disease has been associated with loss of visual function and is a useful measure of retinal disease progression. We hypothesized that rdAc felines with Cep290 mutation would have a similar pattern of degeneration, with relative central retinal preservation associated with maintenance of the EZ. PROCEDURES Fundus imaging, confocal scanning laser ophthalmoscopy, and SD-OCT cross-sectional imaging was performed on 11 rdAc cats ranging from 6 months to 10 years of age. Images were collected from the area centralis, visual streak, and the mid-superior and mid-inferior retina. Receptor plus (REC+, encompassing the entire length of photoreceptors) thicknesses were measured. Regional rates of degeneration were determined by regression analysis and compared using unpaired t-tests. The EZ was evaluated for the presence, absence, or loss of definition. RESULTS RdAc cats showed REC+ thinning over time in all regions. The area centralis and visual streak had a slower rate of thinning than the mid-peripheral retina. There was loss of integrity of the EZ initially in the more peripheral regions, while its integrity was maintained in the area centralis and visual streak at all ages studied. CONCLUSIONS rdAc cats show preservation of the central retina with maintenance of EZ integrity, which recapitulates findings in human patients.
Collapse
Affiliation(s)
- Andrea Louise Minella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Laurence Mireille Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristina Narfström
- Department of Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Simon Michael Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Abstract
Inherited retinal degeneration (IRD) may occur in isolation or as part of a multi-systemic condition. Ocular manifestations may be the presenting symptom of a syndromic disease and can include retinitis pigmentosa, cone-rod dystrophy, or maculopathy. Alternatively, patients affected with syndromic disease may already have other systemic manifestations at the time retinal disease is diagnosed. Some of these systemic diseases can cause significant morbidity. Here, we review several of these syndromic IRDs and their underlying genetic causes. Early recognition and referral for systemic evaluation and surveillance may lead to early intervention and an improved outcome. Obtaining a molecular diagnosis can be beneficial in securing a definitive diagnosis, especially in cases with atypical presentations. A genetic diagnosis may also be informative with regard to prognosis and potential therapies. Effective management and rehabilitation for patients with syndromic retinal dystrophy requires a comprehensive genetic-based team approach involving patients, family members, ophthalmologists, primary care physicians, and geneticists.
Collapse
Affiliation(s)
- Xiang Q Werdich
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts , USA
| | | | | |
Collapse
|
21
|
Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci U S A 2014; 111:9893-8. [PMID: 24946806 DOI: 10.1073/pnas.1322373111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion. We present a Cep290 gene trap mouse model of JBTS that displays the kidney, eye, and brain abnormalities that define the syndrome. Mutant mice present with cystic kidney disease as neonates. Newborn kidneys contain normal amounts of lymphoid enhancer-binding factor 1 (Lef1) and transcription factor 1 (Tcf1) protein, indicating normal function of the Wnt signaling pathway; however, an increase in the protein Gli3 repressor reveals abnormal Hedgehog (Hh) signaling evident in newborn kidneys. Collecting duct cells from mutant mice have abnormal primary cilia and are unable to form spheroid structures in vitro. Treatment of mutant cells with the Hh agonist purmorphamine restored normal spheroid formation. Renal epithelial cells from a JBTS patient with CEP290 mutations showed similar impairments to spheroid formation that could also be partially rescued by exogenous stimulation of Hh signaling. These data implicate abnormal Hh signaling as the cause of NPHP and suggest that Hh agonists may be exploited therapeutically.
Collapse
|
22
|
Xiao X, Miao Q, Chang C, Gershwin ME, Ma X. Common variable immunodeficiency and autoimmunity--an inconvenient truth. Autoimmun Rev 2014; 13:858-64. [PMID: 24747700 DOI: 10.1016/j.autrev.2014.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022]
Abstract
Coexisting morbidities in CVID include bronchiectasis, autoimmunity and malignancies. The incidence of autoimmune disease in CVID patients may approach 20% of cases. The most common autoimmune disease found in CVID patients is autoimmune cytopenia, but rheumatoid arthritis, lupus, and now primary biliary cirrhosis have also been reported. The coexistence of immunodeficiency and autoimmunity appears paradoxical, since one represents a hypoimmune state and the other a hyperimmune state. However, this paradox may not actually be all that implausible due to the complex nature of immune cells, signaling pathways and their interactions. The cellular alterations in combined variable immunodeficiency include a range of T and B cell abnormalities. Selective immune derangements found in CVID include a downregulation of regulatory T cells (Treg cells), accelerated T cell apoptosis, abnormal cytokine production secondary to cytokine gene polymorphisms and increased autoreactive B cell production. The impact of these abnormalities on T and B cell interaction may not only explain the immunodeficiency but also the development of autoimmunity in select groups of patients with CVID. The variability in the clinical manifestations of CVID as a result of this immune interaction suggests that CVID is not one disease but many. This is important because it follows that the treatment of CVID may not always be the same, but may need to be directed specifically towards each individual patient.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Christopher Chang
- Division of Allergy and Immunology, Thomas Jefferson University, Nemours/A.I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19810 USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616 USA.
| | - Xiong Ma
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
23
|
Molin A, Benoist G, Jeanne-Pasquier C, Elkartoufi N, Litzer J, Decamp M, Gruchy N, Durand-Malbruny M, Begorre M, Attie-Bitach T, Leporrier N. 12q21 Microdeletion in a fetus with Meckel syndrome involving CEP290/MKS4. Eur J Med Genet 2013; 56:580-3. [PMID: 23954617 DOI: 10.1016/j.ejmg.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/02/2013] [Indexed: 01/15/2023]
Abstract
We report on a fetus with Meckel syndrome diagnosed during the 21st gestational week, hydrocephalus and bilateral hyperechogenic kidneys were then detected on ultrasonography. Fetal pathological examination showed facial dysmorphism, occipital meningoencephalocele, characteristic renal cysts, mild hepatic ductal dysplasia, hydrocephalus in association with extreme cerebellar vermis hypoplasia and brainstem anomalies. Molecular and cytogenetic analysis identified a paternally inherited CEP290/MKS4 (MIM611134) (12q21) nonsense mutation and a maternal 12q21 microdeletion. Two cases with such a mechanism have previously been described in the literature, one of them involves an inherited microdeletion. The observation of such cases highlights the existence of a pathogenic mechanism which involves deletion and point mutation, and illustrates how homozygosity can hide hemizygosity when usual sequencing methods are used. The identification of hemizygosity enables to determine precisely the molecular mechanism and to understand some phenotypic variations. As they act as complete loss of function allele, deletions might give indication on the severity of the associated point mutation. This clinical report highlights the importance of fetal pathology following termination of pregnancies in order to guide molecular analysis and the potential role of cytogenetic cryptic disorders in autosomal recessive disease. The use of polymorphic marker analysis in association with FISH or arrayCGH provided an accurate identification of molecular mechanisms, accurate genetic counseling and optimized strategy for next pregnancies or preimplantation diagnosis.
Collapse
Affiliation(s)
- Arnaud Molin
- Service de Génétique, laboratoire de Cytogénétique, CHU de Caen, Université Caen Basse-Normandie, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Joubert syndrome is a congenital cerebellar ataxia with autosomal recessive or X-linked inheritance, the diagnostic hallmark of which is a unique cerebellar and brainstem malformation recognisable on brain imaging-the so-called molar tooth sign. Neurological signs are present from the neonatal period and include hypotonia progressing to ataxia, global developmental delay, ocular motor apraxia, and breathing dysregulation. These signs are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton, and liver. 21 causative genes have been identified so far, all of which encode for proteins of the primary cilium or its apparatus. The primary cilium is a subcellular organelle that has key roles in development and in many cellular functions, making Joubert syndrome part of the expanding family of ciliopathies. Notable clinical and genetic overlap exists between distinct ciliopathies, which can co-occur even within families. Such variability is probably explained by an oligogenic model of inheritance, in which the interplay of mutations, rare variants, and polymorphisms at distinct loci modulate the expressivity of the ciliary phenotype.
Collapse
|
25
|
Travaglini L, Brancati F, Silhavy J, Iannicelli M, Nickerson E, Elkhartoufi N, Scott E, Spencer E, Gabriel S, Thomas S, Ben-Zeev B, Bertini E, Boltshauser E, Chaouch M, Cilio MR, de Jong MM, Kayserili H, Ogur G, Poretti A, Signorini S, Uziel G, Zaki MS, Johnson C, Attié-Bitach T, Gleeson JG, Valente EM. Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders. Eur J Hum Genet 2013; 21:1074-8. [PMID: 23386033 DOI: 10.1038/ejhg.2012.305] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/03/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022] Open
Abstract
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.
Collapse
Affiliation(s)
- Lorena Travaglini
- 1] IRCCS Casa Sollievo della Sofferenza, Mendel Laboratory San Giovanni Rotondo, San Giovanni Rotondo, Italy [2] Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia 2012; 1:22. [PMID: 23351659 PMCID: PMC3563624 DOI: 10.1186/2046-2530-1-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/19/2012] [Indexed: 02/08/2023] Open
Abstract
Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals. Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two ciliary proteins - CEP290 and RPGR - that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with photoreceptor cilia biogenesis and pathology.
Collapse
|
28
|
Evidence of a role of inositol polyphosphate 5-phosphatase INPP5E in cilia formation in zebrafish. Vision Res 2012; 75:98-107. [PMID: 23022135 DOI: 10.1016/j.visres.2012.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/28/2012] [Accepted: 09/17/2012] [Indexed: 11/23/2022]
Abstract
Inositol phosphatases are important regulators of cell signaling and membrane trafficking. Mutations in inositol polyphosphate 5-phosphatase, INPP5E, have been identified in Joubert syndrome, a rare congenital disorder characterized by midbrain malformation, retinitis pigmentosa, renal cysts, and polydactyly. Previous studies have implicated primary cilia abnormalities in Joubert syndrome, yet the role of INPP5E in cilia formation is not well understood. In this study, we examined the function of INPP5E in cilia development in zebrafish. Using specific antisense morpholino oligonucleotides to knockdown Inpp5e expression, we observed phenotypes of microphthalmia, pronephros cysts, pericardial effusion, and left-right body axis asymmetry. The Inpp5e morphant zebrafish exhibited shortened and decreased cilia formation in the Kupffer's vesicle and pronephric ducts as compared to controls. Epinephrine-stimulated melanosome trafficking was delayed in the Inpp5e zebrafish morphants. Expression of human INPP5E expression rescued the phenotypic defects in the Inpp5e morphants. Taken together, we showed that INPP5E is critical for the cilia development in zebrafish.
Collapse
|
29
|
Zanni G, Barresi S, Travaglini L, Bernardini L, Rizza T, Digilio MC, Mercuri E, Cianfarani S, Valeriani M, Ferraris A, Da Sacco L, Novelli A, Valente EM, Dallapiccola B, Bertini ES. FGF17, a gene involved in cerebellar development, is downregulated in a patient with Dandy-Walker malformation carrying a de novo 8p deletion. Neurogenetics 2011; 12:241-5. [PMID: 21484435 DOI: 10.1007/s10048-011-0283-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 03/21/2011] [Indexed: 01/21/2023]
Abstract
Fibroblast growth factors (FGFs) are important signaling molecules which act during early vertebrate central nervous system development. FGF17, together with FGF8, is a key factor in the patterning of the mid-hindbrain region with a complex picture of spatiotemporal gene expression during the various stages of cerebellar development. Disruption or reduced expression of fgf17 in mice has been associated with cerebellar vermis abnormalities. We have identified a de novo 2.3-Mb deletion of chromosome 8p21.2-p21.3 in a girl with severe growth retardation, seizures, and classical Dandy-Walker malformation. Analysis of gene expression in blood lymphocytes and skin fibroblasts revealed markedly reduced levels of FGF17, which is located 1 Mb from the proximal deletion breakpoint. This is the first report of a human cerebellar malformation associated with transcriptional downregulation of the FGF17 gene.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù Pediatric Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shaheen R, Faqeih E, Seidahmed MZ, Sunker A, Alali FE, AlQahtani K, Alkuraya FS. A TCTN2 mutation defines a novel Meckel Gruber syndrome locus. Hum Mutat 2011; 32:573-8. [PMID: 21462283 DOI: 10.1002/humu.21507] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/24/2011] [Indexed: 12/21/2022]
Abstract
Meckel Gruber syndrome (MKS) is an autosomal recessive multisystem disorder that represents a severe form of ciliopathy in humans and is characterized by significant genetic heterogeneity. In this article, we describe the identification of a novel MKS locus MKS8 that we map to TCTN2, in a multiplex consanguineous family. TCTN2 is a paralog of the recently identified Tectonic 1, which has been shown to modulate sonic hedgehog signaling. Expression analysis at different developmental stages of the murine ortholog revealed a spatial and temporal pattern consistent with the MKS phenotype observed in our patient. The exclusion of this and the other seven MKS genes in our collection of consanguineous Arab MKS families confirms the existence of two additional MKS loci.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
31
|
Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res 2011; 30:258-74. [PMID: 21477661 DOI: 10.1016/j.preteyeres.2011.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/26/2023]
Abstract
Primary cilia are almost ubiquitously expressed in eukaryotic cells where they function as sensors relaying information either from the extracellular environment or between two compartments of the same cell, such as in the photoreceptor cell. In ciliopathies, a continuously growing class of genetic disorders related to ciliary defects, the modified primary cilium of the photoreceptor, also known as the connecting cilium, is frequently defective. Ciliary dysfunction involves disturbances in the trafficking and docking of specific proteins involved in its biogenesis or maintenance. The main well-conserved ciliary process, intraflagellar transport (IFT), is a complex process carried out by multimeric ciliary particles and molecular motors of major importance in the photoreceptor cell. It is defective in a growing number of ciliopathies leading to retinal degeneration. Retinitis pigmentosa related to ciliary dysfunction can be an isolated feature or a part of a syndrome such as Bardet-Biedl syndrome (BBS). Research on ciliopathies and BBS has led to the discovery of several major cellular processes carried out by the primary cilium structure and has highlighted their genetic heterogeneity.
Collapse
Affiliation(s)
- A Mockel
- Laboratoire de physiopathologie des syndromes rares et héréditaires, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
32
|
Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 2011; 31:1097-108. [PMID: 20690115 DOI: 10.1002/humu.21337] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ciliopathies are an emerging group of disorders, caused by mutations in ciliary genes. One of the most intriguing disease genes associated with ciliopathies is CEP290, in which mutations cause a wide variety of distinct phenotypes, ranging from isolated blindness over Senior-Loken syndrome (SLS), nephronophthisis (NPHP), Joubert syndrome (related disorders) (JS[RD]), Bardet-Biedl syndrome (BBS), to the lethal Meckel-Grüber syndrome (MKS). Despite the identification of over 100 unique CEP290 mutations, no clear genotype-phenotype correlations could yet be established, and consequently the predictive power of a CEP290-related genotype remains limited. One of the challenges is a better understanding of second-site modifiers. In this respect, there is a growing interest in the potential modifying effects of variations in genes encoding other members of the ciliary proteome that interact with CEP290. Here, we provide an overview of all CEP290 mutations identified so far, with their associated phenotypes. To this end, we developed CEP290base, a locus-specific mutation database that links mutations with patients and their phenotypes (medgen.ugent.be/cep290base).
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
33
|
Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 2011; 31:E1709-66. [PMID: 20683928 PMCID: PMC3048164 DOI: 10.1002/humu.21336] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leber Congenital Amaurosis (LCA), the most severe inherited retinal dystrophy, is genetically heterogeneous, with 14 genes accounting for 70% of patients. Here, 91 LCA probands underwent LCA chip analysis and subsequent sequencing of 6 genes (CEP290, CRB1, RPE65, GUCY2D, AIPL1and CRX), revealing mutations in 69% of the cohort, with major involvement of CEP290 (30%). In addition, 11 patients with early-onset retinal dystrophy (EORD) and 13 patients with Senior-Loken syndrome (SLS), LCA-Joubert syndrome (LCA-JS) or cerebello-oculo-renal syndrome (CORS) were included. Exhaustive re-inspection of the overall phenotypes in our LCA cohort revealed novel insights mainly regarding the CEP290-related phenotype. The AHI1 gene was screened as a candidate modifier gene in three patients with the same CEP290 genotype but different neurological involvement. Interestingly, a heterozygous novel AHI1 mutation, p.Asn811Lys, was found in the most severely affected patient. Moreover, AHI1 screening in five other patients with CEP290-related disease and neurological involvement revealed a second novel missense variant, p.His758Pro, in one LCA patient with mild mental retardation and autism. These two AHI1 mutations might thus represent neurological modifiers of CEP290-related disease. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|