1
|
Edey J, Soleimani-Nouri P, Dawson-Kavanagh A, Imran Azeem MS, Episkopou V. X-linked neuronal migration disorders: Gender differences and insights for genetic screening. Int J Dev Neurosci 2023; 83:581-599. [PMID: 37574439 DOI: 10.1002/jdn.10290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical development depends on neuronal migration of both excitatory and inhibitory interneurons. Neuronal migration disorders (NMDs) are conditions characterised by anatomical cortical defects leading to varying degrees of neurocognitive impairment, developmental delay and seizures. Refractory epilepsy affects 15 million people worldwide, and it is thought that cortical developmental disorders are responsible for 25% of childhood cases. However, little is known about the epidemiology of these disorders, nor are their aetiologies fully understood, though many are associated with sporadic genetic mutations. In this review, we aim to highlight X-linked NMDs including lissencephaly, periventricular nodular heterotopia and polymicrogyria because of their mostly familial inheritance pattern. We focus on the most prominent genes responsible: including DCX, ARX, FLNA, FMR1, L1CAM, SRPX2, DDX3X, NSHDL, CUL4B and OFD1, outlining what is known about their prevalence among NMDs, and the underlying pathophysiology. X-linked disorders are important to recognise clinically, as females often have milder phenotypes. Consequently, there is a greater chance they survive to reproductive age and risk passing the mutations down. Effective genetic screening is important to prevent and treat these conditions, and for this, we need to know gene mutations and have a clear understanding of the function of the genes involved. This review summarises the knowledge base and provides clear direction for future work by both scientists and clinicians alike.
Collapse
Affiliation(s)
- Juliet Edey
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Payam Soleimani-Nouri
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | - Vasso Episkopou
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
2
|
Hagiwara S, Shiohama T, Ogi T, Ichikawa T, Hamada H. Subtle infantile spasms presenting as hyperirritability in CK syndrome. Pediatr Int 2022; 64:e15335. [PMID: 36331250 DOI: 10.1111/ped.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Sho Hagiwara
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Tomoo Ogi
- Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Tomohiko Ichikawa
- Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
3
|
Garg M, Kulkarni SD, Sayed R, Hegde AU. CK syndrome: a rare cause of developmental delay in a young boy. Clin Dysmorphol 2021; 30:201-203. [PMID: 34091503 DOI: 10.1097/mcd.0000000000000379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CK syndrome is a rare disorder caused by mutation in the NSDHL (NAD(P) dependent steroid dehydrogenase-like) gene at the Xq28 locus. It has expanded the spectrum of disorders associated with X-linked mental retardation and defects in sterol metabolism. There are only a few reports defining the phenotypic spectrum of this rare disorder. We describe a new patient from the Indian subcontinent who presented with dysmorphism, global developmental delay and epilepsy. We also add left ventricular concentric hypertrophy and sensory neuropathy, which have not been reported previously. Our report suggests that CK syndrome may be unrecognized due to limited clinical knowledge and restricted availability of genetic testing. The expansion of the phenotype may also lead to a better understanding of biochemical anomalies and management approaches.
Collapse
Affiliation(s)
- Meenal Garg
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | | | | |
Collapse
|
4
|
Beck M. Clinical Manifestation in Females with X-linked Metabolic Disorders: Genetic and Pathophysiological Considerations. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
5
|
Li L, Yu J, Zhang X, Han M, Liu W, Li H, Liu S. A novel ATRX mutation causes Smith‑Fineman‑Myers syndrome in a Chinese family. Mol Med Rep 2019; 21:387-392. [PMID: 31746429 DOI: 10.3892/mmr.2019.10818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022] Open
Abstract
Smith‑Fineman‑Myers syndrome (SFMS) is a rare inherited disorder characterized mainly by mental retardation and anomalies in the appearance of patients. SFMS is caused by a mutation in the α‑thalassemia/mental retardation syndrome X‑linked (ATRX) gene and has an X‑linked recessive pattern. In the present study, a novel ATRX mutation was identified, and the association between its genotype and the phenotype was explored in a Chinese Han family with SFMS. This study aimed to lay a foundation for prenatal diagnosis for this family. Briefly, genomic DNA was extracted from peripheral blood samples obtained from the family. High‑throughput genetic sequencing was employed to detect the whole exome; subsequently, Sanger sequencing was performed to verify the candidate mutations. Clinical analysis of the proband was also accomplished. Consequently, a novel missense ATRX mutation was identified comprising a single nucleotide change of C to T, which caused an amino acid substitution at codon 172 in exon 7 (c.515C>T; p.Thr172Ile) of the proband. This mutation was found to co‑segregate in the present SFMS pedigree and was located in a highly conserved region of the ATRX protein, thus suggesting that it may be a pathogenic mutation. Taken together, these findings provided novel information that may lead towards an improved understanding of the genetic and clinical features of patients with SFMS, thereby facilitating a more accurate prenatal diagnosis of SFMS.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Yu
- Department of Clinical Laboratory, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiao Zhang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Mengmeng Han
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenmiao Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hui Li
- Health Physical Examination Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
6
|
Neri G, Schwartz CE, Lubs HA, Stevenson RE. X-linked intellectual disability update 2017. Am J Med Genet A 2018; 176:1375-1388. [PMID: 29696803 DOI: 10.1002/ajmg.a.38710] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
The X-chromosome comprises only about 5% of the human genome but accounts for about 15% of the genes currently known to be associated with intellectual disability. The early progress in identifying the X-linked intellectual disability (XLID)-associated genes through linkage analysis and candidate gene sequencing has been accelerated with the use of high-throughput technologies. In the 10 years since the last update, the number of genes associated with XLID has increased by 96% from 72 to 141 and duplications of all 141 XLID genes have been described, primarily through the application of high-resolution microarrays and next generation sequencing. The progress in identifying genetic and genomic alterations associated with XLID has not been matched with insights that improve the clinician's ability to form differential diagnoses, that bring into view the possibility of curative therapies for patients, or that inform scientists of the impact of the genetic alterations on cell organization and function.
Collapse
Affiliation(s)
- Giovanni Neri
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina.,Istituto di Medicina Genomica, Università Cattolica del S. Cuore, Rome, Italy
| | - Charles E Schwartz
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Herbert A Lubs
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Roger E Stevenson
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| |
Collapse
|
7
|
Reimer A, He Y, Has C. Update on Genetic Conditions Affecting the Skin and the Kidneys. Front Pediatr 2018; 6:43. [PMID: 29552546 PMCID: PMC5840143 DOI: 10.3389/fped.2018.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/14/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic conditions affecting the skin and kidney are clinically and genetically heterogeneous, and target molecular components present in both organs. The molecular pathology involves defects of cell-matrix adhesion, metabolic or signaling pathways, as well as tumor suppressor genes. This article gives a clinically oriented overview of this group of disorders, highlighting entities which have been recently described, as well as the progress made in understanding well-known entities. The genetic bases as well as molecular cell biological mechanisms are described, with therapeutic applications.
Collapse
Affiliation(s)
- Antonia Reimer
- Department of Dermatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yinghong He
- Department of Dermatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Corso G, Dello Russo A, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: Rare disorders many diagnostic pitfalls. World J Gastroenterol 2017; 23:5257-5265. [PMID: 28839426 PMCID: PMC5550775 DOI: 10.3748/wjg.v23.i29.5257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
In recent decades, biotechnology produced a growth of knowledge on the causes and mechanisms of metabolic diseases that have formed the basis for their study, diagnosis and treatment. Unfortunately, it is well known that the clinical features of metabolic diseases can manifest themselves with very different characteristics and escape early detection. Also, it is well known that the prognosis of many metabolic diseases is excellent if diagnosed and treated early. In this editorial we briefly summarized two groups of inherited metabolic diseases, the defects of cholesterol biosynthesis and those of bile acids. Both groups show variable clinical manifestations but some clinical signs and symptoms are common in both the defects of cholesterol and bile acids. The differential diagnosis can be made analyzing sterol profiles in blood and/or bile acids in blood and urine by chromatographic techniques (GC-MS and LC-MS/MS). Several defects of both biosynthetic pathways are treatable so early diagnosis is crucial. Unfortunately their diagnosis is made too late, due either to the clinical heterogeneity of the syndromes (severe, mild and very mild) that to the scarcity of scientific dissemination of these rare diseases. Therefore, the delay in diagnosis leads the patient to the medical observation when the disease has produced irreversible damages to the body. Here, we highlighted simple clinical and laboratory descriptions that can potentially make you to suspect a defect in cholesterol biosynthesis and/or bile acids, as well, we suggest appropriate request of the laboratory tests that along with common clinical features can help to diagnose these defects.
Collapse
|
9
|
Frisso G, Gelzo M, Procopio E, Sica C, Lenza MP, Dello Russo A, Donati MA, Salvatore F, Corso G. A rare case of sterol-C4-methyl oxidase deficiency in a young Italian male: Biochemical and molecular characterization. Mol Genet Metab 2017; 121:329-335. [PMID: 28673550 DOI: 10.1016/j.ymgme.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
Abstract
Inborn defects of cholesterol biosynthesis are metabolic disorders presenting with multi-organ and tissue anomalies. An autosomal recessive defect involving the demethylating enzyme C4-methyl sterol (SC4MOL) has been reported in only 4 patients so far. In infancy, all patients were affected by microcephaly, bilateral congenital cataracts, growth delay, psoriasiform dermatitis, immune dysfunction, and intellectual disability. Herein, we describe a new case of SC4MOL deficiency in which a 19-year-old Italian male was affected by bilateral congenital cataracts, growth delay and learning disabilities, behavioral disorders and small stature, but not microcephaly. Our patient had abundant scalp dandruff, without other skin manifestations. Analysis of the blood sterol profile showed accumulation of C4-monomethyl and C4-dimethyl sterols suggesting a deficiency of the SC4MOL enzyme. Sequencing of the MSMO1 gene (also known as the "SC4MOL" gene) confirmed mutations in each allele (c.731A>G, p.Y244C, which is already known, and c.605G>A, p.G202E, which is a novel variant). His father carried c.731A>G mutation, whereas his mother carried c.605G>A. Thus, the combination of multiple skills and methodologies, in particular, blood sterol profiling and genetic analysis, led to the diagnosis of a new case of a very rare defect of cholesterol biosynthesis. Consequently, we suggest that these two analyses should be performed as soon as possible in all undiagnosed patients affected by bilateral cataracts and developmental delay.
Collapse
Affiliation(s)
- Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate s.c.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Elena Procopio
- SOC Malattie Metaboliche e Muscolari Ereditarie, Centro di Eccellenza di Neuroscienze, Azienda Ospedaliero-Universitaria A. Meyer, Firenze, Italy
| | - Concetta Sica
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maria Pia Lenza
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Antonio Dello Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maria Alice Donati
- SOC Malattie Metaboliche e Muscolari Ereditarie, Centro di Eccellenza di Neuroscienze, Azienda Ospedaliero-Universitaria A. Meyer, Firenze, Italy
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate s.c.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Foggia, Viale L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
10
|
Couser NL, Masood MM, Aylsworth AS, Stevenson RE. Ocular manifestations in the X-linked intellectual disability syndromes. Ophthalmic Genet 2017; 38:401-412. [PMID: 28112979 DOI: 10.1080/13816810.2016.1247459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intellectual disability (ID), a common neurodevelopmental disorder characterized by limitations of both intellectual functioning and adaptive behavior, affects an estimated 1-2% of children. Genetic causes of ID are often accompanied by recognizable syndromal patterns. The vision apparatus is a sensory extension of the brain, and individuals with intellectual disabilities frequently have coexisting abnormalities of ocular structures and the visual pathway system. About one-third of the X-linked intellectual disability (XLID) syndromes have significant eye or ocular adnexa abnormalities that provide important diagnostic clues. Some XLID syndromes (e.g. Aicardi, cerebrooculogenital, Graham anophthalmia, Lenz, Lowe, MIDAS) are widely known for their characteristic ocular manifestations. Nystagmus, optic atrophy, and strabismus are among the more common, nonspecific, ocular manifestations that contribute to neuro-ophthalmological morbidity. Common dysmorphic oculofacial findings include anophthalmia, microphthalmia, hypertelorism, and abnormalities in the configuration or orientation of the palpebral fissures. Four XLID syndromes with major ocular manifestations (incontinentia pigmenti, Goltz, MIDAS, and Aicardi syndromes) are notable because of male lethality and expression occurring predominantly in females. The majority of the genes associated with XLID and ocular manifestations have now been identified.
Collapse
Affiliation(s)
- Natario L Couser
- a Department of Ophthalmology , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA.,b Division of Genetics and Metabolism, Department of Pediatrics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Maheer M Masood
- c University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Arthur S Aylsworth
- b Division of Genetics and Metabolism, Department of Pediatrics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA.,d Department of Genetics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Roger E Stevenson
- e Greenwood Genetic Center, JC Self Research Institute of Human Genetics , Greenwood , South Carolina , USA
| |
Collapse
|
11
|
Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis. Pediatr Radiol 2015; 45:965-76. [PMID: 25646736 DOI: 10.1007/s00247-014-3257-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023]
Abstract
Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis.
Collapse
|
12
|
Preiksaitiene E, Caro A, Benušienė E, Oltra S, Orellana C, Morkūnienė A, Roselló MP, Kasnauskiene J, Monfort S, Kučinskas V, Mayo S, Martinez F. A novel missense mutation in the NSDHL gene identified in a Lithuanian family by targeted next-generation sequencing causes CK syndrome. Am J Med Genet A 2015; 167:1342-8. [PMID: 25900314 DOI: 10.1002/ajmg.a.36999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
The NSDHL gene encodes 3β-hydroxysteroid dehydrogenase involved in one of the later steps of the cholesterol biosynthetic pathway. Mutations in this gene can cause CHILD syndrome (OMIM 308050) and CK syndrome (OMIM 300831). CHILD syndrome is an X-linked dominant, male lethal disorder caused by mutations in the NSDHL gene that result in the loss of the function of the NSDHL protein. CK syndrome is an allelic X-linked recessive disorder. So far, 13 patients with CK syndrome from two families have been reported on. We present a new five-generation family with affected males manifesting clinical features of CK syndrome. Next generation sequencing was targeted to a custom panel of 542 genes with known or putative implication on intellectual disability. Missense mutation p.Gly152Asp was identified in the NSDHL gene in the DNA sample of the affected male. Mutation carrier status was confirmed for all the obligate carriers in the family. The clinical features of the affected males in the family manifested as weak fetal movements, severe intellectual disability, seizures, spasticity, atrophy of optic discs, microcephaly, plagiocephaly, skeletal abnormalities, and minor facial anomalies, including a high nasal bridge, strabismus, and micrognathia. A highly significant preferential transmission of the mutation was observed in this and previous families segregating CK syndrome. Our report expands the clinical spectrum of this syndrome to include weak fetal movements, spasticity, and plagiocephaly, and transmission ratio distortion. The various findings in these patients increase our understanding of the diversity of the clinical presentation of cholesterol biosynthesis disorders.
Collapse
Affiliation(s)
- Egle Preiksaitiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Alfonso Caro
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Eglė Benušienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Silvestre Oltra
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Aušra Morkūnienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Mónica Pilar Roselló
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jurate Kasnauskiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sandra Monfort
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sonia Mayo
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Martinez
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
13
|
Cunningham D, DeBarber AE, Bir N, Binkley L, Merkens LS, Steiner RD, Herman GE. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet 2015; 24:2808-25. [PMID: 25652406 DOI: 10.1093/hmg/ddv042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
NSDHL is a 3β-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism.
Collapse
Affiliation(s)
- David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Laura Binkley
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Robert D Steiner
- Department of Pediatrics, Department of Molecular and Medical Genetics and Institute on Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, USA and Marshfield Clinic Research Foundation and the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Marshfield and Madison, WI, USA
| | - Gail E Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA,
| |
Collapse
|
14
|
Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:227-39. [PMID: 24888723 DOI: 10.1002/ajmg.c.31399] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polymicrogyria (PMG) is one of the most common malformations of cortical development. It is characterized by overfolding of the cerebral cortex and abnormal cortical layering. It is a highly heterogeneous malformation with variable clinical and imaging features, pathological findings, and etiologies. It may occur as an isolated cortical malformation, or in association with other malformations within the brain or body as part of a multiple congenital anomaly syndrome. Polymicrogyria shows variable topographic patterns with the bilateral perisylvian pattern being most common. Schizencephaly is a subtype of PMG in which the overfolded cortex lines full-thickness clefts connecting the subarachnoid space with the cerebral ventricles. Both genetic and non-genetic causes of PMG have been identified. Non-genetic causes include congenital cytomegalovirus infection and in utero ischemia. Genetic causes include metabolic conditions such as peroxisomal disorders and the 22q11.2 and 1p36 continguous gene deletion syndromes. Mutations in over 30 genes have been found in association with PMG, especially mutations in the tubulin family of genes. Mutations in the (PI3K)-AKT pathway have been found in association PMG and megalencephaly. Despite recent genetic advances, the mechanisms by which polymicrogyric cortex forms and causes of the majority of cases remain unknown, making diagnostic and prenatal testing and genetic counseling challenging. This review summarizes the clinical, imaging, pathologic, and etiologic features of PMG, highlighting recent genetic advances.
Collapse
|
15
|
Identification of a novel polymorphism in X-linked sterol-4-alpha-carboxylate 3-dehydrogenase (Nsdhl) associated with reduced high-density lipoprotein cholesterol levels in I/LnJ mice. G3-GENES GENOMES GENETICS 2013; 3:1819-25. [PMID: 23979938 PMCID: PMC3789806 DOI: 10.1534/g3.113.007567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loci controlling plasma lipid concentrations were identified by performing a quantitative trait locus analysis on genotypes from 233 mice from a F2 cross between KK/HlJ and I/LnJ, two strains known to differ in their high-density lipoprotein (HDL) cholesterol levels. When fed a standard diet, HDL cholesterol concentration was affected by two significant loci, the Apoa2 locus on Chromosome (Chr) 1 and a novel locus on Chr X, along with one suggestive locus on Chr 6. Non-HDL concentration also was affected by loci on Chr 1 and X along with a suggestive locus on Chr 3. Additional loci that may be sex-specific were identified for HDL cholesterol on Chr 2, 3, and 4 and for non-HDL cholesterol on Chr 5, 7, and 14. Further investigation into the potential causative gene on Chr X for reduced HDL cholesterol levels revealed a novel, I/LnJ-specific nonsynonymous polymorphism in Nsdhl, which codes for sterol-4-alpha-carboxylate 3-dehydrogenase in the cholesterol synthesis pathway. Although many lipid quantitative trait locus have been reported previously, these data suggest there are additional genes left to be identified that control lipid levels and that can provide new pharmaceutical targets.
Collapse
|
16
|
Seeger MA, Paller AS. The role of abnormalities in the distal pathway of cholesterol synthesis in the Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects (CHILD) syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:345-52. [PMID: 24060582 DOI: 10.1016/j.bbalip.2013.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/28/2022]
Abstract
CHILD syndrome (Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects) is a rare X-linked dominant ichthyotic disorder. CHILD syndrome results from loss of function mutations in the NSDHL gene, which leads to inhibition of cholesterol synthesis and accumulation of toxic metabolic intermediates in affected tissues. The CHILD syndrome skin is characterized by plaques topped by waxy scales and a variety of developmental defects in extracutaneous tissues, particularly limb hypoplasia or aplasia. Strikingly, these alterations are commonly segregated to either the right or left side of the body midline with little to no manifestations on the ipsilateral side. By understanding the underlying disease mechanism of CHILD syndrome, a pathogenesis-based therapy has been developed that successfully reverses the CHILD syndrome skin phenotype and has potential applications to the treatment of other ichthyoses. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Mark A Seeger
- Departments of Dermatology and Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Herman GE, Kratz L. Disorders of sterol synthesis: beyond Smith-Lemli-Opitz syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:301-21. [PMID: 23042573 DOI: 10.1002/ajmg.c.31340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery in 1993 that Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol biosynthesis, human disorders associated with additional enzymes involved in the conversion of lanosterol to cholesterol have been identified. This review will focus primarily on the clinical aspects of these disorders, highlighting newly described syndromes, such as SC4MOL deficiency and CK syndrome. We will also provide clinical descriptions of additional cases for extremely rare disorders, such as desmosterolosis. We will compare and contrast the findings with those found in SLOS and briefly discuss possible mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Gail E Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, 700 Children's Dr. Rm W403, Columbus, OH 43205, USA.
| | | |
Collapse
|
18
|
Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res 2012; 1458:18-33. [PMID: 22560501 DOI: 10.1016/j.brainres.2012.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 12/16/2022]
Abstract
Many women continue to consume low to moderate quantities of alcohol during pregnancy, which can result in the variable neurobehavioural effects in the absence of physiological abnormalities that characterize fetal alcohol spectrum disorders (FASD). Previously, we reported that a mouse model for FASD based on voluntary maternal ethanol consumption throughout gestation resulted in offspring that showed mild developmental delay, anxiety-related traits, and deficits in spatial learning. Here, we extend this model by evaluating the gene expression changes that occur in the adult brain of C57BL/6J mice prenatally exposed to ethanol via maternal preference drinking. The results of two independent expression array experiments indicate that ethanol induces subtle but consistent changes to global gene expression. Gene enrichment analysis showed over-represented gene ontology classifications of cellular, embryonic, and nervous system development. Molecular network analysis supported these classifications, with significant networks related to cellular and tissue development, free radical scavenging, and small molecule metabolism. Further, a number of genes identified have previously been implicated in FASD-relevant neurobehavioural phenotypes such as cognitive function (Ache, Bcl2, Cul4b, Dkc1, Ebp, Lcat, Nsdh1, Sstr3), anxiety (Bcl2), attention deficit hyperactivity disorder (Nsdh1), and mood disorders (Bcl2, Otx2, Sstr3). The results suggest a complex residual "footprint" of neurodevelopmental ethanol exposure that may provide a new perspective for identifying mechanisms that underlie the life-long persistence of FASD-related cognitive and behavioural alterations, including potential targets for treatment.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
19
|
Morimoto M, Souich CD, Trinh J, McLarren KW, Boerkoel CF, Hendson G. Expression profile of NSDHL in human peripheral tissues. J Mol Histol 2011; 43:95-106. [PMID: 22113624 DOI: 10.1007/s10735-011-9375-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
NAD(P) steroid dehydrogenase-like (NSDHL) is an X-linked gene that encodes a 3β-hydroxysteroid dehydrogenase in the cholesterol biosynthetic pathway. Loss-of-function mutations in NSDHL cause Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects (CHILD) and CK syndromes. CHILD syndrome is a male lethal X-linked dominant disorder characterized by asymmetric skin and limb anomalies in affected females. CK syndrome is an intellectual disability disorder characterized by disproportionate short stature, brain malformations, and dysmorphic features in affected males. To understand better the relationship of the expression of mRNA and protein encoded by human NSDHL to the peripheral malformations of these disorders, we characterized the peripheral expression of the mRNA and protein by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunoblotting and immunohistochemistry. We also profiled the mRNA expression of mouse Nsdhl by in situ hybridization. Expression of the mRNA and protein encoded by human NSDHL parallels that of mouse Nsdhl mRNA for most but not all tissues. Furthermore, human NSDHL protein and mouse Nsdhl mRNA were expressed in tissues synthesizing cholesterol and steroids and in all peripheral tissues affected by CHILD or CK syndromes.
Collapse
Affiliation(s)
- Marie Morimoto
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
20
|
McLarren KW, Severson TM, du Souich C, Stockton DW, Kratz LE, Cunningham D, Hendson G, Morin RD, Wu D, Paul JE, An J, Nelson TN, Chou A, DeBarber AE, Merkens LS, Michaud JL, Waters PJ, Yin J, McGillivray B, Demos M, Rouleau GA, Grzeschik KH, Smith R, Tarpey PS, Shears D, Schwartz CE, Gecz J, Stratton MR, Arbour L, Hurlburt J, Van Allen MI, Herman GE, Zhao Y, Moore R, Kelley RI, Jones SJM, Steiner RD, Raymond FL, Marra MA, Boerkoel CF. Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am J Hum Genet 2010; 87:905-14. [PMID: 21129721 DOI: 10.1016/j.ajhg.2010.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/31/2010] [Accepted: 11/10/2010] [Indexed: 12/28/2022] Open
Abstract
CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development.
Collapse
|
21
|
Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2010; 52:6-34. [PMID: 20929975 DOI: 10.1194/jlr.r009548] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Forbes D Porter
- Program in Developmental Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | |
Collapse
|