1
|
Tolino E, Skroza N, Del Giudice E, Maddalena P, Bernardini N, Proietti I, Mambrin A, Marraffa F, Rossi G, Lubrano R, Potenza C. A Case of Psoriatic Disease and Hidradenitis Suppurativa in a Child with Chromosome 17q21.31 Microduplication Syndrome. CHILDREN (BASEL, SWITZERLAND) 2023; 10:931. [PMID: 37371163 DOI: 10.3390/children10060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
Psoriatic disease is a chronic, relapsing inflammatory disorder, characterized mostly by cutaneous erythematous scaly plaques sometimes associated with arthritis. Hidradenitis suppurativa (HS) is a chronic relapsing inflammatory disease of the apocrine glands, characterized clinically by painful abscesses, sinus tracts and scars. It typically occurs after puberty, affecting mainly intertriginous areas of the body. There is a strong association between HS and psoriasis since they share the same pathogenic inflammatory pathway. The patient presented: low birthweight, microcephaly, facial dysmorphisms, lumbar hyperlordosis, walking difficulties, global psychomotor developmental delay and learning disabilities. A genetic evaluation revealed a 2.5 Mb de novo microduplication in the 17q21.31 chromosomal region. Dermatological examination revealed HS (Hurley stage II-HS) distributed in the genital area and inguinal folds, psoriatic plaques on the retroauricolar folds, on the elbows bilaterally and on the lateral aspect of the right ankle and psoriatic arthritis. The patient was treated with adalimumab, with a marked improvement of both conditions. To our best knowledge, we report the first case of coexisting Psoriatic Arthritis Disease and Hidradenitis Suppurativa in a child with chromosome 17q21.31 microduplication syndrome. We hypothesize that gene CRHR1 duplication included in the 17q21.31 chromosomal region might be involved in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Ersilia Tolino
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Nevena Skroza
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Emanuela Del Giudice
- Maternal and Child Health Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Patrizia Maddalena
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Nicoletta Bernardini
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Ilaria Proietti
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Alessandra Mambrin
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Federica Marraffa
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Giovanni Rossi
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| | - Riccardo Lubrano
- Maternal and Child Health Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Concetta Potenza
- Department of Medico-Surgical Sciences and Biotechnologies, Dermatology Unit "D. Innocenzi", Sapienza University of Rome, Polo Pontino, Via Firenze, 1, 04019 Terracina, Italy
| |
Collapse
|
2
|
Clinical findings and genetic analysis of patients with copy number variants involving 17p13.3 using a single nucleotide polymorphism array: a single-center experience. BMC Med Genomics 2022; 15:268. [PMID: 36544138 PMCID: PMC9773569 DOI: 10.1186/s12920-022-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND 17p13.3 microdeletions or microduplications (collectively known as copy number variants or CNVs) have been described in individuals with neurodevelopmental disorders. However, 17p13.3 CNVs were rarely reported in fetuses. This study aims to investigate the clinical significance of 17p13.3 CNVs with varied sizes and gene content in prenatal and postnatal samples. METHODS Eight cases with 17p13.3 CNVs out of 8806 samples that had been subjected to single nucleotide polymorphism array analysis were retrospectively analyzed, along with karyotyping, clinical features, and follow-up. RESULTS Eight cases with 17p13.3 CNVs consisted of five fetuses, one aborted embryo and two probands manifested severe congenital defects. The indications of prenatal testing varied considerably for the five fetuses, including ultrasound abnormalities (n = 3), segmental deletions indicated by non-invasive prenatal testing (n = 1), and intellectual disability in the mother of one fetus (n = 1). Of them, two and six harbored copy number gains and losses involving 17p13.3, respectively. The size of the detected 17p13.3 CNVs ranged from 576 kb to 5.7 Mb. Case 1 was diagnosed with 17p13.3 duplication syndrome, and cases 4, 6, and 7 with Miller-Dieker syndrome (MDS). Microdeletions of the 17p13.3 region in two cases (cases 5 and 8) involving YWHAE and CRK, sparing PAFAH1B1, were classified as pathogenic. Case 2 harbored a 576 kb microduplication, encompassing YWHAE and CRK but not PAFAH1B1, which was of maternal origin and considered a variant of uncertain significance. Case 3 carried one 74.2 Mb mosaic duplication of approximately 3.5 on chromosome 17p13.2q25.3, and two deletions at 17p13.3p13.2 and 17q25.3. The karyotype of case 3 was 46,XY,r(17)(p13q25). For five fetuses, only case 2 continued gestation and showed normal development at the age of 15 months; the others were subjected to termination of pregnancy. CONCLUSION The clinical findings of 17p13.3 microdeletions or microduplications varied among subjects, and 17p13.3 CNVs often differ in size and gene content. Microdeletions or microduplications containing the typical MDS region, as well as the microdeletions involving YWHAE and CRK, could be classified as pathogenic. The clinical significance of small duplications including YWHAE and CRK but not PAFAH1B1 remains uncertain, for which parental testing and clinical heterogeneity should be considered in genetic counseling.
Collapse
|
3
|
Cai M, Fu X, Xu L, Lin N, Huang H. Prenatal Diagnosis of 17p11.2 Copy Number Abnormalities Associated With Smith-Magenis and Potocki-Lupski Syndromes in Fetuses. Front Genet 2022; 12:779237. [PMID: 34992630 PMCID: PMC8724517 DOI: 10.3389/fgene.2021.779237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Smith-Magenis syndrome and Potocki-Lupski syndrome are rare autosomal dominant diseases. Although clinical phenotypes of adults and children have been reported, fetal ultrasonic phenotypes are rarely reported. A retrospective analysis of 6,200 pregnant women who received invasive prenatal diagnosis at Fujian Provincial Maternal and Child Health Hospital between October 2016 and January 2021 was performed. Amniotic fluid or umbilical cord blood was extracted for karyotyping and single nucleotide polymorphism array analysis. Single nucleotide polymorphism array analysis revealed six fetuses with copy number variant changes in the 17p11.2 region. Among them, one had a copy number variant microdeletion in the 17p11.2 region, which was pathogenically analyzed and diagnosed as Smith-Magenis syndrome. Five fetuses had copy number variant microduplications in the 17p11.2 region, which were pathogenically analyzed and diagnosed as Potocki-Lupski syndrome. The prenatal ultrasound phenotypes of the six fetuses were varied. The parents of two fetuses with Potocki-Lupski syndrome refused verification. Smith-Magenis syndrome in one fetus and Potocki-Lupski in another were confirmed as de novo. Potocki-Lupski syndrome in two fetuses was confirmed to be from maternal inheritance. The prenatal ultrasound phenotypes of Smith-Magenis syndrome and Potocki-Lupski syndrome in fetuses vary; single nucleotide polymorphism array analysis is a powerful diagnostic tool for these diseases. The ultrasonic phenotypes of these cases may enrich the clinical database.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xianguo Fu
- Department of Prenatal Diagnosis, Ningde Municipal Hospital, Ningde Normal University, Ningde, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
4
|
Hayakawa-Iwamoto A, Aotani D, Shimizu Y, Kakoi S, Hasegawa C, Itoh S, Fujii A, Takeda K, Yagi T, Koyama H, Imaeda K, Nozu K, Nagano C, Kataoka H, Tanaka T. Maturity-onset diabetes of the young (MODY) type 5, presenting as diabetic ketoacidosis with alkalemia - A report of a case. J Diabetes Investig 2021; 13:923-926. [PMID: 34931465 PMCID: PMC9077722 DOI: 10.1111/jdi.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
A 34-year-old man visited our hospital because of dry mouth and weight loss. His plasma glucose level was 32.8 mmol/L and serum levels of ketone bodies were increased, but with metabolic alkalemia. He was also suffering from renal tubular hypomagnesemia and hypokalemia. Abdominal CT revealed bilateral renal cysts. These findings were suggestive of maturity-onset diabetes of the young (MODY) type5. Genetic testing revealed heterozygous hepatocyte nuclear factor 1 beta (HNF1B) gene deletion. In the present case, it seemed reasonable to view HNF1B gene deletion as the common cause of MODY5-associated diabetic ketoacidosis and tubular malfunction-induced hypokalemic alkalosis. This case exemplifies an importance of HNF1B gene abnormality as a potential cause of diabetic ketoacidosis with alkalemia.
Collapse
Affiliation(s)
- Akiko Hayakawa-Iwamoto
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Daisuke Aotani
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yuki Shimizu
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shota Kakoi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Chie Hasegawa
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shunsuke Itoh
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Asami Fujii
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Katsushi Takeda
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Yagi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kenro Imaeda
- Department of Endocrinology and Diabetes, Nagoya City University West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
5
|
Kaplan K, McCool C, Lupski JR, Glaze D, Potocki L. Objective measures of sleep disturbances in children with Potocki-Lupski syndrome. Am J Med Genet A 2019; 179:1982-1986. [PMID: 31342617 DOI: 10.1002/ajmg.a.61307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 11/06/2022]
Abstract
Potocki-Lupski syndrome (PTLS; MIM 610883) is a neurodevelopmental disorder caused by a microduplication, a 3.7 Mb copy number variant, mapping within chromosome 17p11.2, encompassing the dosage-sensitive RAI1 gene. Whereas RAI1 triplosensitivity causes PTLS, haploinsufficiency of RAI1 due to 17p11.2 microdeletion causes the clinically distinct Smith-Magenis syndrome (SMS; MIM 182290). Most individuals with SMS have an inversion of the melatonin cycle. Subjects with PTLS have mild sleep disturbances such as sleep apnea with no melatonin abnormalities described. Sleep patterns and potential disturbances in subjects with PTLS have not been objectively characterized. We delineated sleep characteristics in 23 subjects with PTLS who underwent a polysomnogram at Texas Children's Hospital. Eleven of these subjects (58%) completed the Child's Sleep Habits Questionnaire (CSHQ). Urinary melatonin was measured in one patient and published previously. While the circadian rhythm of melatonin in PTLS appears not to be disrupted, we identified significant differences in sleep efficiency, percentage of rapid eye movement sleep, oxygen nadir, obstructive apnea hypopnea index, and periodic limb movements between prepubertal subjects with PTLS and previously published normative data. Data from the CSHQ indicate that 64% (7/11) of parents do not identify a sleep disturbance in their children. Our data indicate that younger individuals, <10 years, with PTLS have statistically significant abnormalities in five components of sleep despite lack of recognition of substantial sleep disturbances by parents. Our data support the contention that patients with PTLS should undergo clinical evaluations for sleep disordered breathing and periodic limb movement disorder, both of which are treatable conditions.
Collapse
Affiliation(s)
- Kevin Kaplan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Children's Sleep Center, Baylor College of Medicine, Houston, Texas.,Department of Pulmonary, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Caroline McCool
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Daniel Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Children's Sleep Center, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Lorraine Potocki
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther 2019; 41:675-698. [PMID: 30910331 DOI: 10.1016/j.clinthera.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease. METHODS A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool. FINDINGS Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection. IMPLICATIONS Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences ("junk repetitive DNA"), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.
Collapse
|
7
|
Sullivan LL, Maloney KA, Towers AJ, Gregory SG, Sullivan BA. Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosome Res 2016; 24:451-466. [PMID: 27581771 DOI: 10.1007/s10577-016-9536-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Centromeres are defined by a specialized chromatin organization that includes nucleosomes that contain the centromeric histone variant centromere protein A (CENP-A) instead of canonical histone H3. Studies in various organisms have shown that centromeric chromatin (i.e., CENP-A chromatin or centrochromatin) exhibits plasticity, in that it can assemble on different types of DNA sequences. However, once established on a chromosome, the centromere is maintained at the same position. In humans, this location is the highly homogeneous repetitive DNA alpha satellite. Mislocalization of centromeric chromatin to atypical locations can lead to genome instability, indicating that restriction of centromeres to a distinct genomic position is important for cell and organism viability. Here, we describe a rearrangement of Homo sapiens chromosome 17 (HSA17) that has placed alpha satellite DNA next to euchromatin. We show that on this mutant chromosome, CENP-A chromatin has spread from the alpha satellite into the short arm of HSA17, establishing a ∼700 kb hybrid centromeric domain that spans both repetitive and unique sequences and changes the expression of at least one gene over which it spreads. Our results illustrate the plasticity of human centromeric chromatin and suggest that heterochromatin normally constrains CENP-A chromatin onto alpha satellite DNA. This work highlights that chromosome rearrangements, particularly those that remove the pericentromere, create opportunities for centromeric nucleosomes to move into non-traditional genomic locations, potentially changing the surrounding chromatin environment and altering gene expression.
Collapse
Affiliation(s)
- Lori L Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3054, Durham, NC, 27710, USA
| | - Kristin A Maloney
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3054, Durham, NC, 27710, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aaron J Towers
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC, 27710, USA.,Quintiles, 4820 Emperor Blvd., Durham, NC, 27703, USA
| | - Simon G Gregory
- Department of Medicine, Duke Molecular Physiology Institute, 300 N. Duke Street, Durham, NC, 27701, USA.,Division of Human Genetics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3054, Durham, NC, 27710, USA. .,Quintiles, 4820 Emperor Blvd., Durham, NC, 27703, USA.
| |
Collapse
|
8
|
Yuan B, Liu P, Gupta A, Beck CR, Tejomurtula A, Campbell IM, Gambin T, Simmons AD, Withers MA, Harris RA, Rogers J, Schwartz DC, Lupski JR. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates. PLoS Genet 2015; 11:e1005686. [PMID: 26641089 PMCID: PMC4671654 DOI: 10.1371/journal.pgen.1005686] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. Genomic instability due to the intrinsic sequence architecture of the genome, such as low copy repeats (LCRs), is a major contributor to de novo mutations that can occur in the process of human genome evolution. LCRs can mediate genomic rearrangements associated with genomic disorders by acting as substrates for nonallelic homologous recombination. Juvenile-onset nephronophthisis 1 is the most frequent genetic cause of renal failure in children. An LCR-mediated, homozygous common recurrent deletion encompassing NPHP1 is found in the majority of affected subjects, while heterozygous deletion representing the nephronophthisis 1 recessive carrier state is frequently observed amongst world populations. Interestingly, the human NPHP1 locus is located proximal to the head-to-head fusion site of two ancestral chromosomes that occurred in the great apes, which resulted in a reduction of chromosome number from 48 in nonhuman primates to the current 46 in humans. In this study, we characterized and provided evidence for the diverse genomic architecture at the NPHP1 locus and potential structural variant haplotypes in the human population. Furthermore, our analyses of primate genomes shed light on the massive changes of genomic architecture at the human NPHP1 locus and delineated a model for the emergence of the LCRs during primate evolution.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aditya Gupta
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics and The UW-Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christine R. Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anusha Tejomurtula
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ian M. Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexandra D. Simmons
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marjorie A. Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeffrey Rogers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics and The UW-Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Przybytkowski E, Lenkiewicz E, Barrett MT, Klein K, Nabavi S, Greenwood CMT, Basik M. Chromosome-breakage genomic instability and chromothripsis in breast cancer. BMC Genomics 2014; 15:579. [PMID: 25011954 PMCID: PMC4227294 DOI: 10.1186/1471-2164-15-579] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/13/2014] [Indexed: 01/20/2023] Open
Abstract
Background Chromosomal breakage followed by faulty DNA repair leads to gene amplifications and deletions in cancers. However, the mere assessment of the extent of genomic changes, amplifications and deletions may reduce the complexity of genomic data observed by array comparative genomic hybridization (array CGH). We present here a novel approach to array CGH data analysis, which focuses on putative breakpoints responsible for rearrangements within the genome. Results We performed array comparative genomic hybridization in 29 primary tumors from high risk patients with breast cancer. The specimens were flow sorted according to ploidy to increase tumor cell purity prior to array CGH. We describe the number of chromosomal breaks as well as the patterns of breaks on individual chromosomes in each tumor. There were differences in chromosomal breakage patterns between the 3 clinical subtypes of breast cancers, although the highest density of breaks occurred at chromosome 17 in all subtypes, suggesting a particular proclivity of this chromosome for breaks. We also observed chromothripsis affecting various chromosomes in 41% of high risk breast cancers. Conclusions Our results provide a new insight into the genomic complexity of breast cancer. Genomic instability dependent on chromosomal breakage events is not stochastic, targeting some chromosomes clearly more than others. We report a much higher percentage of chromothripsis than described previously in other cancers and this suggests that massive genomic rearrangements occurring in a single catastrophic event may shape many breast cancer genomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-579) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Przybytkowski
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec H3T-1E2, Canada.
| | | | | | | | | | | | | |
Collapse
|
10
|
Horikawa Y, Enya M, Fushimi N, Fushimi Y, Takeda J. Screening of diabetes of youth for hepatocyte nuclear factor 1 mutations: clinical phenotype of HNF1β-related maturity-onset diabetes of the young and HNF1α-related maturity-onset diabetes of the young in Japanese. Diabet Med 2014; 31:721-7. [PMID: 24905847 DOI: 10.1111/dme.12416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/01/2013] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
AIM To compare the prevalence and clinical features of HNF1β-related MODY and HNF1α-related MODY in Japanese. METHODS We enrolled 230 Japanese patients with suspected MODY and examined them for HNF1α and HNF1β mutations. We characterized the clinical features of HNF1β-related MODY (HNF1β-MODY) and HNF1α-related MODY (HNF1α-MODY). RESULTS Six patients had HNF1β mutations, four of which were large gene deletions and 24 patients had HNF1α mutations, which included one gene deletion. The mean fasting plasma glucose level at onset of HNF1β-MODY was considerably higher and the age of onset of HNF1β-MODY was considerably older than they were for HNF1α-MODY, while the mean BMI and C-peptide index at onset were similar. Three patients with HNF1β-MODY were found to have dorsal pancreatic agenesis and four of them had whole-gene deletion. Five of the patients with HNF1β-MODY had insulin secretion defects and were treated with insulin, and four of these did not have a parent with overt diabetes. CONCLUSION HNF1β-MODY may present as β-cell dysfunction in Japanese rather than as hyperinsulinaemia, which it does among European/American. This dysfunction might result from an intrinsically lower capacity for insulin secretion in Japanese. HNF1β-MODY has an older age of onset than HNF1α-MODY, which may suggest lower penetrance of the disease. In addition, HNF1β-MODY has a broad spectrum of clinical manifestations, some of which are detectable by imaging. This may be helpful in some cases for selecting HNF1β-MODY candidates for genetic testing.
Collapse
Affiliation(s)
- Y Horikawa
- Department of Diabetes and Endocrinology, Gifu University, Graduate School of Medicine, Gifu, Japan
| | | | | | | | | |
Collapse
|
11
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
A case of 17q21.31 microduplication and 7q31.33 microdeletion, associated with developmental delay, microcephaly, and mild dysmorphic features. Case Rep Genet 2014; 2014:658570. [PMID: 24649381 PMCID: PMC3932285 DOI: 10.1155/2014/658570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022] Open
Abstract
Concurrent cryptic microdeletion and microduplication syndromes have recently started to reveal themselves with the advent of microarray technology. Analysis has shown that low-copy repeats (LCRs) have allowed chromosome regions throughout the genome to become hotspots for nonallelic homologous recombination to take place. Here, we report a case of a 7.5-year-old girl who manifests microcephaly, developmental delay, and mild dysmorphic features. Microarray analysis identified a microduplication in chromosome 17q21.31, which encompasses the CRHR1, MAPT, and KANSL1 genes, as well as a microdeletion in chromosome 7q31.33 that is localised within the GRM8 gene. To our knowledge this is one of only a few cases of 17q21.31 microduplication. The clinical phenotype of patients with this microduplication is milder than of those carrying the reciprocal microdeletions, and suggests that the lower incidence of the former compared to the latter may be due to underascertainment.
Collapse
|
13
|
Lee CG, Park SJ, Yun JN, Ko JM, Kim HJ, Yim SY, Sohn YB. Array-based comparative genomic hybridization in 190 Korean patients with developmental delay and/or intellectual disability: a single tertiary care university center study. Yonsei Med J 2013; 54:1463-70. [PMID: 24142652 PMCID: PMC3809862 DOI: 10.3349/ymj.2013.54.6.1463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study analyzed and evaluated the demographic, clinical, and cytogenetic data [G-banded karyotyping and array-based comparative genomic hybridization (array CGH)] of patients with unexplained developmental delay or intellectual disability at a single Korean institution. MATERIALS AND METHODS We collected clinical and cytogenetic data based on retrospective charts at Ajou University Medical Center, Suwon, Korea from April 2008 to March 2012. RESULTS A total of 190 patients were identified. Mean age was 5.1±1.87 years. Array CGH yielded abnormal results in 26 of 190 patients (13.7%). Copy number losses were about two-fold more frequent than gains. A total of 61.5% of all patients had copy number losses. The most common deletion disorders included 22q11.2 deletion syndrome, 15q11.2q12 deletion and 18q deletion syndrome. Copy number gains were identified in 34.6% of patients, and common diseases among these included Potocki-Lupski syndrome, 15q11-13 duplication syndrome and duplication 22q. Abnormal karyotype with normal array CGH results was exhibited in 2.6% of patients; theses included balanced translocation (n=2), inversion (n=2) and low-level mosaicism (n=1). Facial abnormalities (p<0.001) and failure to thrive were (p<0.001) also more frequent in the group of patients with abnormal CGH findings. CONCLUSION Array CGH is a useful diagnostic tool in clinical settings in patients with developmental delay or intellectual disability combined with facial abnormalities or failure to thrive.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Medical Genetics, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | | | | | | | | | | | | |
Collapse
|
14
|
Lee CG, Park SJ, Yim SY, Sohn YB. Clinical and cytogenetic features of a Potocki-Lupski syndrome with the shortest 0.25Mb microduplication in 17p11.2 including RAI1. Brain Dev 2013; 35:681-5. [PMID: 23078968 DOI: 10.1016/j.braindev.2012.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Potocki-Lupski syndrome (PTLS [MIM 610883]) is a recently recognized microduplication syndrome associated with 17p11.2. It is characterized by mild facial dysmorphic features, hypermetropia, infantile hypotonia, failure to thrive, mental retardation, autistic spectrum disorders, behavioral abnormalities, sleep apnea, and cardiovascular anomalies. In several studies, the critical PTLS region was deduced to be 1.3Mb in length, and included RAI1 and 17 other genes. We report a 3-year-old Korean boy with the smallest duplication in 17p11.2 and a milder phenotype. He had no family history of neurologic disease or developmental delay and no history of seizure, autistic features, or behavior problems. He showed subtle facial dysmorphic features (dolichocephaly and a mildly asymmetric smile) and flat feet. All laboratory tests were normal and he had no evidence of internal organ anomalies. He was found to have mild intellectual disabilities (full scale IQ 65 on K-WPPSI) and language developmental delay (age of 2.2year-old on PRESS). Array comparative genomic hybridization (CGH) showed about a 0.25Mb microduplication on chromosome 17p11.2 containing four Refseq (NCBI reference sequence) genes, including RAI1 [arr 17p11.2(17,575,978-17,824,623)×3]. When compared with previously reported cases, the milder phenotype of our patient may be associated with the smallest duplication in 17p11.2, 0.25Mb in length.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | |
Collapse
|
15
|
Curry CJ, Rosenfeld JA, Grant E, Gripp KW, Anderson C, Aylsworth AS, Saad TB, Chizhikov VV, Dybose G, Fagerberg C, Falco M, Fels C, Fichera M, Graakjaer J, Greco D, Hair J, Hopkins E, Huggins M, Ladda R, Li C, Moeschler J, Nowaczyk MJM, Ozmore JR, Reitano S, Romano C, Roos L, Schnur RE, Sell S, Suwannarat P, Svaneby D, Szybowska M, Tarnopolsky M, Tervo R, Tsai ACH, Tucker M, Vallee S, Wheeler FC, Zand DJ, Barkovich AJ, Aradhya S, Shaffer LG, Dobyns WB. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A 2013; 161A:1833-52. [PMID: 23813913 DOI: 10.1002/ajmg.a.35996] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/31/2013] [Indexed: 11/11/2022]
Abstract
Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome.
Collapse
|
16
|
Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans 2012; 40:672-6. [PMID: 22817714 DOI: 10.1042/bst20120045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the MAPT (microtubule-associated protein tau) gene are associated with FTLD (frontotemporal lobar degeneration) with tau pathology. These mutations result in a decreased ability of tau to bind MTs (microtubules), an increased production of tau with four MT-binding repeats or enhanced tau aggregation. In two FTLD patients, we recently described CNVs (copy number variations) affecting the MAPT gene, consisting of a partial deletion and a complete duplication of the gene. The partial deletion resulted in a truncated protein lacking the first MT-binding domain, which had a dramatic decrease in the binding to MTs but acquired the ability to bind MAP (microtubule-associated protein) 1-B. In this case, tauopathy probably resulted from both a loss of normal function and a gain of function by which truncated tau would sequester another MAP. In the other FTLD patient, the complete duplication might result in the overexpression of tau, which in the mouse model induces axonopathy and tau aggregates reminiscent of FTLD-tau pathology. Interestingly, the same rearrangement was also described in several children with mental retardation, autism spectrum disorders and dysmorphic features, as well as in a schizophrenic patient. Finally, complete deletions of the MAPT gene have been associated with mental retardation, hypotonia and facial dysmorphism.
Collapse
|
17
|
Lee CG, Park SJ, Yun JN, Yim SY, Sohn YB. Reciprocal deletion and duplication of 17p11.2-11.2: Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome. J Korean Med Sci 2012; 27:1586-90. [PMID: 23255863 PMCID: PMC3524443 DOI: 10.3346/jkms.2012.27.12.1586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/14/2012] [Indexed: 11/24/2022] Open
Abstract
Deletion and duplication of the -3.7-Mb region in 17p11.2 result in two reciprocal syndrome, Smith-Magenis syndrome and Potocki-Lupski syndrome. Smith-Magenis syndrome is a well-known developmental disorder. Potocki-Lupski syndrome has recently been recognized as a microduplication syndrome that is a reciprocal disease of Smith-Magenis syndrome. In this paper, we report on the clinical and cytogenetic features of two Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome. Patient 1 (Smith-Magenis syndrome) was a 2.9-yr-old boy who showed mild dysmorphic features, aggressive behavioral problems, and developmental delay. Patient 2 (Potocki-Lupski syndrome), a 17-yr-old boy, had only intellectual disabilities and language developmental delay. We used array comparative genomic hybridization (array CGH) and found a 2.6 Mb-sized deletion and a reciprocal 2.1 Mb-sized duplication involving the 17p11.2. These regions overlapped in a 2.1 Mb size containing 11 common genes, including RAI1 and SREBF.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Pediatrics, Eulji General Hospital, Seoul, Korea
| | | | - Jun-No Yun
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Shin-Young Yim
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
McGillivray G, Rosenfeld JA, McKinlay Gardner RJ, Gillam LH. Genetic counselling and ethical issues with chromosome microarray analysis in prenatal testing. Prenat Diagn 2012; 32:389-95. [PMID: 22467169 DOI: 10.1002/pd.3849] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular karyotyping using chromosome microarray analysis (CMA) detects more pathogenic chromosomal anomalies than classical karyotyping, making CMA likely to become a first tier test for prenatal diagnosis. Detecting copy number variants of uncertain clinical significance raises ethical considerations. We consider the risk of harm to a woman or her fetus following the detection of a copy number variant of uncertain significance, whether it is ethically justifiable to withhold any test result information from a woman, what constitutes an 'informed choice' when women are offered CMA in pregnancy and whether clinicians are morally responsible for 'unnecessary' termination of pregnancy. Although we are cognisant of the distress associated with uncertain prenatal results, we argue in favour of the autonomy of women and their right to information from genome-wide CMA in order to make informed choices about their pregnancies. We propose that information material to a woman's decision-making process, including uncertain information, should not be withheld, and that it would be paternalistic for clinicians to try to take responsibility for women's decisions to terminate pregnancies. Non-directive pre-test and post-test genetic counselling is central to the delivery of these ethical objectives.
Collapse
Affiliation(s)
- George McGillivray
- Royal Women's Hospital, Melbourne, Victoria, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Frühmesser A, Haberlandt E, Judmaier W, Schinzel A, Utermann B, Erdel M, Fauth C, Utermann G, Zschocke J, Kotzot D. Effects of deletion and duplication in a patient with a 46,XX,der(7)t(7;17)(q36;p13)mat karyotype. Am J Med Genet A 2012; 158A:2239-44. [PMID: 22821890 DOI: 10.1002/ajmg.a.35450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 04/08/2012] [Indexed: 11/09/2022]
Abstract
Exact breakpoint determination by DNA-array has dramatically improved the analysis of genotype-phenotype correlations in chromosome aberrations. It allows a more exact definition of the most relevant genes and particularly their isolated or combined impact on the phenotype in an unbalanced state. Here, we report on a 21-year-old female with severe growth retardation, severe intellectual disability, hypoplasia of the corpus callosum, unilateral sacral hypoplasia, tethered cord, various minor facial dysmorphisms, and a telomeric deletion of about 4.4 Mb in 7q36.2->qter combined with a telomeric duplication of about 8 Mb in 17pter->p13.1. Fine mapping was achieved with the Illumina® Infinium HumanOmni1-Quad v1.0 BeadChip. Most of the major clinical features correspond to the well-known effects of haploinsufficiency of the MNX1 and SHH genes. In addition, review of the literature suggests an association of the 17p duplication with specific facial dysmorphic features and skeletal anomalies, but also an aggravating effect of the duplication-deletion for severe growth retardation as well as sacral and corpus callosum hypoplasia by one or more genes located on the proximal half of the segmental 17p duplication could be elaborated by comparison with other patients from the literature carrying either the deletion or the duplication found in our patient.
Collapse
Affiliation(s)
- Anne Frühmesser
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ruiz Esparza-Garrido R, Velázquez-Wong AC, Araujo-Solís MA, Huicochea-Montiel JC, Velázquez-Flores MÁ, Salamanca-Gómez F, Arenas-Aranda DJ. Duplication of the Miller-Dieker Critical Region in a Patient with a Subtelomeric Unbalanced Translocation t(10;17)(p15.3;p13.3). Mol Syndromol 2012; 3:82-8. [PMID: 23326253 DOI: 10.1159/000339639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 01/01/2023] Open
Abstract
Submicroscopic duplications in the Miller-Dieker critical region have been recently described as new genomic disorders. To date, only a few cases have been reported with overlapping 17p13.3 duplications in this region. Also, small deletions that affect chromosome region 10p14→pter are rarely described in the literature. In this study, we describe, to our knowledge for the first time, a 5-year-old female patient with intellectual disability who has an unbalanced 10;17 translocation inherited from the father. The girl was diagnosed by subtelomeric FISH and array-CGH, showing a 4.43-Mb heterozygous deletion on chromosome 10p that involved 14 genes and a 3.22-Mb single-copy gain on chromosome 17p, which includes the critical region of the Miller-Dieker syndrome and 61 genes. The patient's karyotype was established as 46,XX.arr 10p15.3p15.1(138,206-4,574,436)x1,17p13.3(87,009-3,312,600)x3. Because our patient exhibits a combination of 2 imbalances, she has phenotypic features of both chromosome abnormalities, which have been reported separately. Interestingly, the majority of patients who carry the deletion 10p have visual and auditory deficiencies that are attributed to loss of the GATA3 gene. However, our patient also presents severe hearing and visual problems even though GATA3 is present, suggesting the involvement of different genes that affect the development of the visual and auditory systems.
Collapse
Affiliation(s)
- R Ruiz Esparza-Garrido
- Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital de Pediatría, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
21
|
Grant SGN. Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 2012; 22:522-9. [DOI: 10.1016/j.conb.2012.02.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 02/05/2023]
|
22
|
Moles KJ, Gowans GC, Gedela S, Beversdorf D, Yu A, Seaver LH, Schultz RA, Rosenfeld JA, Torchia BS, Shaffer LG. NF1 microduplications: identification of seven nonrelated individuals provides further characterization of the phenotype. Genet Med 2012; 14:508-14. [PMID: 22241097 DOI: 10.1038/gim.2011.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Neurofibromatosis, type 1 (NF1) is an autosomal dominant disorder caused by mutations of the neurofibromin 1 (NF1) gene at 17q11.2. Approximately 5% of individuals with NF1 have a 1.4-Mb heterozygous 17q11.2 deletion encompassing NF1, formed through nonallelic homologous recombination (NAHR) between the low-copy repeats that flank this region. NF1 microdeletion syndrome is more severe than NF1 caused by gene mutations, with individuals exhibiting facial dysmorphisms, developmental delay (DD), intellectual disability (ID), and excessive neurofibromas. Although NAHR can also cause reciprocal microduplications, reciprocal NF1 duplications have been previously reported in just one multigenerational family and a second unrelated proband. METHODS We analyzed the clinical features in seven individuals with NF1 microduplications, identified among 48,817 probands tested in our laboratory by array-based comparative genomic hybridization. RESULTS The only clinical features present in more than one individual were variable DD/ID, facial dysmorphisms, and seizures. No neurofibromas were present. Three sets of parents were tested: one duplication was apparently de novo, one inherited from an affected mother, and one inherited from a clinically normal father. CONCLUSION This is the first report comparing the phenotypes of nonrelated individuals with NF1 microduplications. This comparison will allow for further definition of this emerging microduplication syndrome.
Collapse
Affiliation(s)
- Kimberly J Moles
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoshimoto M, Ludkovski O, DeGrace D, Williams JL, Evans A, Sircar K, Bismar TA, Nuin P, Squire JA. PTEN genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications. Genes Chromosomes Cancer 2011; 51:149-60. [DOI: 10.1002/gcc.20939] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/19/2011] [Indexed: 12/30/2022] Open
|
24
|
Schaaf CP, Wiszniewska J, Beaudet AL. Copy number and SNP arrays in clinical diagnostics. Annu Rev Genomics Hum Genet 2011; 12:25-51. [PMID: 21801020 DOI: 10.1146/annurev-genom-092010-110715] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability of chromosome microarray analysis (CMA) to detect submicroscopic genetic abnormalities has revolutionized the clinical diagnostic approach to individuals with intellectual disability, neurobehavioral phenotypes, and congenital malformations. The recognition of the underlying copy number variant (CNV) in respective individuals may allow not only for better counseling and anticipatory guidance but also for more specific therapeutic interventions in some cases. The use of CMA technology in prenatal diagnosis is emerging and promises higher sensitivity for several highly penetrant, clinically severe microdeletion and microduplication syndromes. Genetic counseling complements the diagnostic testing with CMA, given the presence of CNVs of uncertain clinical significance, incomplete penetrance, and variable expressivity in some cases. While oligonucleotide arrays with high-density exonic coverage remain the gold standard for the detection of CNVs, single-nucleotide polymorphism (SNP) arrays allow for detection of consanguinity and most cases of uniparental disomy and provide a higher sensitivity to detect low-level mosaic aneuploidies.
Collapse
Affiliation(s)
- Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
25
|
Benhammou JN, Vocke CD, Santani A, Schmidt LS, Baba M, Seyama K, Wu X, Korolevich S, Nathanson KL, Stolle CA, Linehan WM. Identification of intragenic deletions and duplication in the FLCN gene in Birt-Hogg-Dubé syndrome. Genes Chromosomes Cancer 2011; 50:466-77. [PMID: 21412933 PMCID: PMC3075348 DOI: 10.1002/gcc.20872] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/26/2022] Open
Abstract
Birt-Hogg-Dubé syndrome (BHDS), caused by germline mutations in the folliculin (FLCN) gene, predisposes individuals to develop fibrofolliculomas, pulmonary cysts, spontaneous pneumothoraces, and kidney cancer. The FLCN mutation detection rate by bidirectional DNA sequencing in the National Cancer Institute BHDS cohort was 88%. To determine if germline FLCN intragenic deletions/duplications were responsible for BHDS in families lacking FLCN sequence alterations, 23 individuals from 15 unrelated families with clinically confirmed BHDS but no sequence variations were analyzed by real-time quantitative PCR (RQ-PCR) using primers for all 14 exons. Multiplex ligation-dependent probe amplification (MLPA) assay and array-based comparative genomic hybridization (aCGH) were utilized to confirm and fine map the rearrangements. Long-range PCR followed by DNA sequencing was used to define the breakpoints. We identified six unique intragenic deletions in nine patients from six different BHDS families including four involving exon 1, one that spanned exons 2-5, and one that encompassed exons 7-14 of FLCN. Four of the six deletion breakpoints were mapped, revealing deletions ranging from 5688 to 9189 bp. In addition, one 1341 bp duplication, which included exons 10 and 11, was identified and mapped. This report confirms that large intragenic FLCN deletions can cause BHDS and documents the first large intragenic FLCN duplication in a BHDS patient. Additionally, we identified a deletion "hot spot" in the 5'-noncoding-exon 1 region that contains the putative FLCN promoter based on a luciferase reporter assay. RQ-PCR, MLPA and aCGH may be used for clinical molecular diagnosis of BHDS in patients who are FLCN mutation-negative by DNA sequencing.
Collapse
Affiliation(s)
| | - Cathy D. Vocke
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, 20892 USA
| | - Avni Santani
- Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA USA
| | - Laura S. Schmidt
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, 20892 USA
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Masaya Baba
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, 20892 USA
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiaolin Wu
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Susana Korolevich
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Katherine L. Nathanson
- Abramson Cancer Center at the University of Pennsylvania and Department of Medicine, Division of Medical Genetics, University of Pennsylvania, Philadelphia, PA USA
| | - Catherine A. Stolle
- Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA USA
| | | |
Collapse
|
26
|
Hyon C, Marlin S, Chantot-Bastaraud S, Mabboux P, Beaujard MP, Al Ageeli E, Vazquez MP, Picard A, Siffroi JP, Portnoï MF. A new 17p13.3 microduplication including the PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation. Eur J Med Genet 2011; 54:287-91. [DOI: 10.1016/j.ejmg.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
|
27
|
Yusupov R, Roberts AE, Lacro RV, Sandstrom M, Ligon AH. Potocki-Lupski syndrome: An inherited dup(17)(p11.2p11.2) with hypoplastic left heart. Am J Med Genet A 2011; 155A:367-71. [DOI: 10.1002/ajmg.a.33845] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Inheritance of Charcot-Marie-Tooth disease 1A with rare nonrecurrent genomic rearrangement. Neurogenetics 2010; 12:51-8. [PMID: 21193943 DOI: 10.1007/s10048-010-0272-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/13/2010] [Indexed: 12/21/2022]
Abstract
Rare copy number variations by the nonrecurrent rearrangements involving PMP22 have been recently suggested to be associated with CMT1A peripheral neuropathy. As a mechanism of the nonrecurrent rearrangement, replication-based fork stalling template switching (FoSTeS) by microhomology-mediated break-induced replication (MMBIR) has been proposed. We found three Korean CMT1A families with putative nonrecurrent duplication. The duplications were identified by microsatellite typing and applying a CGH microarray. The breakpoint sequences in two families suggested an Alu-Alu-mediated rearrangement with the FoSTeS by the MMBIR, and a two-step rearrangement of the replication-based FoSTeS/MMBIR and meiosis-based recombination. The two-step mechanism has still not been reported. Segregation analysis of 17p12 microsatellite markers and breakpoint junction analysis suggested that the nonrecurrent rearrangements are stably inherited without alteration of junction sequence; however, they may allow some alteration of the genomic contents in duplication across generations by recombination event. It might be the first study on the pedigree analysis of the large CMT1A families with nonrecurrent rearrangements. It seems that the exact mechanism of the nonrecurrent rearrangements in the CMT1A may have a far more complex process than has been expected.
Collapse
|