1
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
2
|
Wijburg FA, Aiach K, Chakrapani A, Eisengart JB, Giugliani R, Héron B, Muschol N, O'Neill C, Olivier S, Parker S. An observational, prospective, multicenter, natural history study of patients with mucopolysaccharidosis type IIIA. Mol Genet Metab 2022; 135:133-142. [PMID: 34991944 DOI: 10.1016/j.ymgme.2021.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA, also known as Sanfilippo syndrome) is a rare genetic lysosomal storage disease characterized by early and progressive neurodegeneration resulting in a rapid decline in cognitive function affecting speech and language, adaptive behavior, and motor skills. We carried out a prospective observational study to assess the natural history of patients with MPS IIIA, using both standardized tests and patient-centric measures to determine the course of disease progression over a 2-year period. A cohort of 23 patients (7 girls, 16 boys; mean age 28-105 months at baseline) with a confirmed diagnosis of MPS IIIA were assessed and followed up at intervals of 3-6 months; cognitive function was measured using Bayley Scales of Infant and Toddler Development 3rd edition (BSID-III) to derive cognitive development quotients (DQ). Daily living, speech/language development and motor skills were measured using the Vineland Adaptive Behavior Scale (VABS-II). Sleep-wake patterns, behavior and quality-of-life questionnaires were also reported at each visit using parent/caregiver reported outcome tools. All patients had early onset severe MPS IIIA, were diagnosed before 74 months of age, and had cognitive scores below normal developmental levels at baseline. Patients less than 40 months of age at baseline were more likely to continue developing new skills over the first 6-12 months of follow-up. There was a high variability in cognitive developmental age (DA) in patients between 40 and 70 months of age; two-thirds of these patients already had profound cognitive decline, with a DA ≤10 months. The highest cognitive DA achieved in the full study cohort was 34 months. Post hoc, patients were divided into two groups based on baseline cognitive DQ (DQ ≥50 or <50). Cognitive DQ decreased linearly over time, with a decrease from baseline of 30.1 and 9.0 points in patients with cognitive DQ ≥50 at baseline and cognitive DQ <50 at baseline, respectively. Over the 2-year study, VABS-II language scores declined progressively. Motor skills, including walking, declined over time, although significantly later than cognitive decline. No clear pattern of sleep disturbance was observed, but night waking was common in younger patients. Pain scores, as measured on the quality-of-life questionnaire, increased over the study period. The findings of this study strengthen the natural history data on cognitive decline in MPS IIIA and importantly provide additional data on endpoints, validated by the patient community as important to treat, that may form the basis of a multidomain endpoint capturing the disease complexity.
Collapse
Affiliation(s)
- Frits A Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands; Amsterdam Lysosome Center "Sphinx", University of Amsterdam, Amsterdam, Netherlands.
| | | | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Julie B Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Roberto Giugliani
- Department of Genetics, UFRGS, Medical Genetics Service and DR Brazil, HCPA, Porto Alegre, Brazil
| | - Bénédicte Héron
- Reference Center for Lysosomal Diseases, Pediatric Neurology Department, Armand Trousseau University Hospital, APHP, Paris, France
| | - Nicole Muschol
- Department of Pediatrics, International Center for Lysosomal Disorders (ICLD), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
3
|
Pierzynowska K, Gaffke L, Jankowska E, Rintz E, Witkowska J, Wieczerzak E, Podlacha M, Węgrzyn G. Proteasome Composition and Activity Changes in Cultured Fibroblasts Derived From Mucopolysaccharidoses Patients and Their Modulation by Genistein. Front Cell Dev Biol 2020; 8:540726. [PMID: 33195185 PMCID: PMC7606483 DOI: 10.3389/fcell.2020.540726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, we have asked whether proteasome composition and function are affected in cells derived from patients suffering from all types of mucopolysaccharidosis (MPS), an inherited metabolic disease caused by accumulation of undegraded glycosaminoglycans (GAGs). Moreover, we have tested if genistein, a small molecule proposed previously as a potential therapeutic agent in MPS, can modulate proteasomes, which might shed a new light on the molecular mechanisms of action of this isoflavone as a potential drug for macromolecule storage diseases. Significant changes in expression of various proteasome-linked genes have been detected during transcriptomic (RNA-seq) analyses in vast majority of MPS types. These results were corroborated by demonstration of increased proteasomal activities in MPS cells. However, GAGs were not able to stimulate the 26S proteasome in vitro, suggesting that the observed activation in cells is indirect rather than arising from direct GAG-proteasome interactions. Genistein significantly reduced proteasomal activities in fibroblasts derived from patients suffering from all MPS types, while its effects on in vitro 26S proteasome activity were negligible. Unexpectedly, levels of many proteasomal subunits were increased in genistein-treated MPS cells. On the other hand, this ostensible discrepancy between results of experiments designed for estimation of effects of genistein on proteasome activities and abundance of proteasomal subunits can be explained by demonstration that in the presence of this isoflavone, levels of ubiquitinated proteins were decreased. The genistein-mediated reduction of proteasomal activities might have beneficial effects in cells of MPS patients due to potential increasing of residual activities of defective lysosomal enzymes which would otherwise be subjected to efficient ubiquitination and proteasomal degradation as misfolded proteins. These results indicate another activity of genistein (apart from previously demonstrated reduction of GAG synthesis efficiency, stimulation of lysosomal biogenesis, and activation of the autophagy process) which can be beneficial in the use of this small molecule in treatment of MPS.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdañsk, Gdañsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdañsk, Gdañsk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdañsk, Gdañsk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| |
Collapse
|
4
|
Nijmeijer SCM, van den Born LI, Kievit AJA, Stepien KM, Langendonk J, Marchal JP, Roosing S, Wijburg FA, Wagenmakers MAEM. The attenuated end of the phenotypic spectrum in MPS III: from late-onset stable cognitive impairment to a non-neuronopathic phenotype. Orphanet J Rare Dis 2019; 14:249. [PMID: 31718697 PMCID: PMC6852993 DOI: 10.1186/s13023-019-1232-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/22/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The phenotypic spectrum of many rare disorders is much wider than previously considered. Mucopolysaccharidosis type III (Sanfilippo syndrome, MPS III), is a lysosomal storage disorder traditionally considered to be characterized by childhood onset, progressive neurocognitive deterioration with a rapidly or slowly progressing phenotype. The presented MPS III case series demonstrates adult onset phenotypes with mild cognitive impairment or non-neuronopathic phenotypes. METHODS In this case series all adult MPS III patients with a mild- or non-neuronopathic phenotype, who attend the outpatient clinic of 3 expert centers for lysosomal storage disorders were included. A mild- or non-neuronopathic phenotype was defined as having completed regular secondary education and attaining a level of independency during adulthood, involving either independent living or a paid job. RESULTS Twelve patients from six families, with a median age at diagnosis of 43 years (range 3-68) were included (11 MPS IIIA, 1 MPS IIIB). In the four index patients symptoms which led to diagnostic studies (whole exome sequencing and metabolomics) resulting in the diagnosis of MPS III; two patients presented with retinal dystrophy, one with hypertrophic cardiomyopathy and one with neurocognitive decline. The other eight patients were diagnosed by family screening. At a median age of 47 years (range 19-74) 9 out of the 12 patients had normal cognitive functions. Nine patients had retinal dystrophy and 8 patients hypertrophic cardiomyopathy. CONCLUSION We show the very mild end of the phenotypic spectrum of MPS III, ranging from late-onset stable neurocognitive impairment to a fully non-neuronopathic phenotype. Awareness of this phenotype could lead to timely diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Stephanie C M Nijmeijer
- Amsterdam UMC, Pediatric Metabolic Diseases, Amsterdam Lysosome Center "Sphinx", University of Amsterdam, H8-264, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Anneke J A Kievit
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karolina M Stepien
- Salford Royal NHS Foundation Trust, Adult Inherited Metabolic Disorders, Mark Holland Metabolic Unit, Salford, UK
| | - Janneke Langendonk
- Erasmus MC, Center for Lysosomal and Metabolic disease, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Pieter Marchal
- Amsterdam UMC, Psychosocial Department, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne Roosing
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics, Nijmegen, The Netherlands
| | - Frits A Wijburg
- Amsterdam UMC, Pediatric Metabolic Diseases, Amsterdam Lysosome Center "Sphinx", University of Amsterdam, H8-264, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Margreet A E M Wagenmakers
- Erasmus MC, Center for Lysosomal and Metabolic disease, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Muschol NM, Pape D, Kossow K, Ullrich K, Arash-Kaps L, Hennermann JB, Stücker R, Breyer SR. Growth charts for patients with Sanfilippo syndrome (Mucopolysaccharidosis type III). Orphanet J Rare Dis 2019; 14:93. [PMID: 31046785 PMCID: PMC6498678 DOI: 10.1186/s13023-019-1065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Mucopolysaccharidosis (MPS) type III (Sanfilippo syndrome) comprises a group of rare, lysosomal storage diseases caused by the deficiency of one of four enzymes involved in the degradation of heparan sulfate. The clinical hallmark of the disease is severe neurological deterioration leading to dementia and death in the second decade of life. Adult MPS patients are generally of short stature. To date there is no clear description of the physical development of MPS III patients. The aim of this study was to document growth reference data for MPS III patients. We collected growth data of 182 German MPS III patients and were able to develop growth charts for this cohort. Growth curves for height, weight, head circumference, and body mass index were calculated and compared to German reference charts. Results Birth height, weight and head circumference were within the physiological ranges. Both genders were significantly taller than healthy children at 2 years of age, while only male patients were taller at the age of four. Growth velocity decelerated after the ages of 4.5 and 5 years for female and male patients, respectively. Both genders were significantly shorter than the reference group at the age of 17.5 years. Head circumference was larger compared to healthy matched controls within the first 2 years of life and remained enlarged until physical maturity. Conclusion MPS III is a not yet treatable severe neuro-degenerative disease, developing new therapeutic strategies might change the course of the disease significantly. The present charts contribute to the understanding of the natural history of MPS III. Specific growth charts represent an important tool for families and physicians as the expected height at physical maturity can be estimated and therapeutic effects can be monitored. Electronic supplementary material The online version of this article (10.1186/s13023-019-1065-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole M Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Daniel Pape
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kai Kossow
- Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistr.52, 20246, Hamburg, Germany
| | - Laila Arash-Kaps
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ralf Stücker
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sandra R Breyer
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany. .,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Knottnerus SJG, Nijmeijer SCM, IJlst L, Te Brinke H, van Vlies N, Wijburg FA. Prediction of phenotypic severity in mucopolysaccharidosis type IIIA. Ann Neurol 2017; 82:686-696. [PMID: 29023963 PMCID: PMC5725696 DOI: 10.1002/ana.25069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023]
Abstract
Objective Mucopolysaccharidosis IIIA or Sanfilippo disease type A is a progressive neurodegenerative disorder presenting in early childhood, caused by an inherited deficiency of the lysosomal hydrolase sulfamidase. New missense mutations, for which genotype–phenotype correlations are currently unknown, are frequently reported, hampering early prediction of phenotypic severity and efficacy assessment of new disease‐modifying treatments. We aimed to design a method to determine phenotypic severity early in the disease course. Methods Fifty‐three patients were included for whom skin fibroblasts and data on disease course and mutation analysis were available. Patients were phenotypically characterized on clinical data as rapidly progressing or slowly progressing. Sulfamidase activity was measured in fibroblasts cultured at 37 °C and at 30 °C. Results Sulfamidase activity in fibroblasts from patients homozygous or compound heterozygous for a combination of known severe mutations remained below the limit of quantification under both culture conditions. In contrast, sulfamidase activity in fibroblasts from patients homozygous or compound heterozygous for a known mild mutation increased above the limit of quantification when cultured at 30 °C. With division on the basis of the patients' phenotype, fibroblasts from slowly progressing patients could be separated from rapidly progressing patients by increase in sulfamidase activity when cultured at 30 °C (p < 0.001, sensitivity = 96%, specificity = 93%). Interpretation Phenotypic severity strongly correlates with the potential to increase sulfamidase activity in fibroblasts cultured at 30 °C, allowing reliable distinction between patients with rapidly progressing or slowly progressing phenotypes. This method may provide an essential tool for assessment of treatment effects and for health care and life planning decisions. Ann Neurol 2017;82:686–696
Collapse
Affiliation(s)
- Suzan J G Knottnerus
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx," Academic Medical Center, University of Amsterdam.,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephanie C M Nijmeijer
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx," Academic Medical Center, University of Amsterdam
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Heleen Te Brinke
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Naomi van Vlies
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frits A Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx," Academic Medical Center, University of Amsterdam.,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Ghosh A, Shapiro E, Rust S, Delaney K, Parker S, Shaywitz AJ, Morte A, Bubb G, Cleary M, Bo T, Lavery C, Bigger BW, Jones SA. Recommendations on clinical trial design for treatment of Mucopolysaccharidosis Type III. Orphanet J Rare Dis 2017. [PMID: 28651568 PMCID: PMC5485703 DOI: 10.1186/s13023-017-0675-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Mucopolysaccharidosis type III is a progressive, neurodegenerative lysosomal storage disorder for which there is currently no effective therapy. Though numerous potential therapies are in development, there are several challenges to conducting clinical research in this area. We seek to make recommendations on the approach to clinical research in MPS III, including the selection of outcome measures and trial endpoints, in order to improve the quality and impact of research in this area. Results An international workshop involving academic researchers, clinical experts and industry groups was held in June 2015, with presentations and discussions on disease pathophysiology, biomarkers, potential therapies and clinical outcome measures. A set of recommendations was subsequently prepared by a working group and reviewed by all delegates. We present a series of 11 recommendations regarding the conduct of clinical research, outcome measures and management of natural history data in Mucopolysaccharidosis type III. Conclusions Improving the quality of clinical research in Mucopolysaccharidosis type III will require an open, collaborative and systematic approach between academic researchers, clinicians and industry. Natural history data should be published as soon as possible and ideally collated in a central repository. There should be agreement on outcome measures and instruments for evaluation of clinical outcomes to maximise the effectiveness of current and future clinical research.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Willink Biochemical Genetics Unit, Manchester Centre For Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elsa Shapiro
- Shapiro & Delaney LLC, Mendota Heights, MN, USA.,Paediatrics and Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Stewart Rust
- Paediatric Psychosocial Service, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | | | | | | | | | | | | - Brian W Bigger
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Simon A Jones
- Willink Biochemical Genetics Unit, Manchester Centre For Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Sidhu NS, Schreiber K, Pröpper K, Becker S, Usón I, Sheldrick GM, Gärtner J, Krätzner R, Steinfeld R. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1321-35. [PMID: 24816101 PMCID: PMC4014121 DOI: 10.1107/s1399004714002739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/05/2014] [Indexed: 11/10/2022]
Abstract
Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Navdeep S. Sidhu
- Department of Neuropediatrics, Faculty of Medicine, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
- Department of Structural Chemistry, Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kathrin Schreiber
- Department of Neuropediatrics, Faculty of Medicine, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Kevin Pröpper
- Department of Structural Chemistry, Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Isabel Usón
- Instituto de Biologia Molecular de Barcelona (IBMB–CSIC), Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain
| | - George M. Sheldrick
- Department of Structural Chemistry, Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Jutta Gärtner
- Department of Neuropediatrics, Faculty of Medicine, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Ralph Krätzner
- Department of Neuropediatrics, Faculty of Medicine, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Robert Steinfeld
- Department of Neuropediatrics, Faculty of Medicine, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|
9
|
de Ruijter J, Broere L, Mulder MF, van der Ploeg AT, Rubio-Gozalbo ME, Wortmann SB, Visser G, Wijburg FA. Growth in patients with mucopolysaccharidosis type III (Sanfilippo disease). J Inherit Metab Dis 2014; 37:447-54. [PMID: 24173409 DOI: 10.1007/s10545-013-9658-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mucopolysaccharidosis III (MPS III), known as Sanfilippo disease, is a lysosomal storage disorder mainly characterized by progressive neurodegeneration with cognitive decline and relatively attenuated somatic signs and symptoms. Although short stature is invariably present in patients with the other mucopolysaccharidoses, it has not been sufficiently addressed in MPS III. The aim of this study was to investigate growth data of a large Dutch MPS III cohort in order to construct growth charts for MPS III patients. METHODS Height, weight, head circumference (HC), and body mass index (BMI) data from 118 MPS III patients were used to construct reference curves, using the lambda, mu, sigma (LMS) method. Genotype-group comparisons for height standard deviation scores (SDS) were performed by Kruskal-Wallis analysis for different age groups. RESULTS Birth weight and length were within normal ranges for gestational age and showed a significantly stunted growth from age 6 years onward. Mean final heights were 169.7 cm (-2.0 SDS) and 165.4 cm (-0.84 SDS) for adult male and female, patients, respectively. Phenotypic severity, as assessed by genotyping, correlated with growth pattern and final height. In addition, mean BMI and HC SDS were significantly higher when compared with Dutch standards for both boys and girls. CONCLUSIONS Growth in MPS III is stunted mainly in patients with the severe phenotype. We provide disease-specific growth references that can be used for clinical management of MPS III patients and may be of value for future treatment studies.
Collapse
Affiliation(s)
- J de Ruijter
- Department of Pediatrics and Amsterdam Lysosome Centre 'Sphinx', Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
de Ruijter J, Ijlst L, Kulik W, van Lenthe H, Wagemans T, van Vlies N, Wijburg FA. Heparan sulfate derived disaccharides in plasma and total urinary excretion of glycosaminoglycans correlate with disease severity in Sanfilippo disease. J Inherit Metab Dis 2013; 36:271-9. [PMID: 22968582 DOI: 10.1007/s10545-012-9535-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sanfilippo disease (Mucopolysaccharidosis III) is a neurodegenerative lysosomal disorder characterized by accumulation of the glycosaminoglycan heparan sulfate (HS). MPS III has a large phenotypic variability and early assessment of disease severity is difficult. We investigated the correlation between disease severity and the plasma concentration of HS (pHS, defined by the sum of the heparan sulfate derived disaccharides obtained after enzymatic digestion) and urinary total GAGs level (uGAGs, measured by the dimethylene blue test) in a cross-sectional cohort of 44 MPS III patients. METHODS Disease severity was established on the basis of the age of complete loss of independent walking and of full loss of speech in all patients. Hazard ratios (HR) were obtained with cox-regression analysis. In order to allow prediction of a severe phenotype based on a cut-off value for pHS, patients were divided in two groups (severely affected and less severely affected) based on predictive mutations or on the age of full loss of speech. Receiver operator characteristics (ROC) were obtained for pHS. RESULTS pHS and uGAGs were independently and linearly associated with an increased risk of speech loss with a HR of 1.8 (95 % CI 1.3-2.7) per 500 ng/ml increase of HS in plasma (p = 0.002), and a HR of 2.7 (95 % CI 1.6-4.4) per 10 mg/mmol creatinine increase of uGAGs (p < 0.001). pHS and uGAGS were less strongly associated with loss of walking. The area under the ROC curve for pHS was 0.85, indicating good discrimination. CONCLUSION pHS and uGAGs may be useful biomarkers for prediction of severity in MPS III.
Collapse
Affiliation(s)
- J de Ruijter
- Department of Pediatrics and Amsterdam Lysosome Centre 'Sphinx', University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
de Ruijter J, de Ru MH, Wagemans T, Ijlst L, Lund AM, Orchard PJ, Schaefer GB, Wijburg FA, van Vlies N. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol Genet Metab 2012; 107:705-10. [PMID: 23084433 DOI: 10.1016/j.ymgme.2012.09.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs) caused by a defect in the degradation of glycosaminoglycans (GAGs). The accumulation of GAGs in MPS patients results in extensive, severe and progressive disease. Disease modifying therapy is available for three of the MPSs and is being developed for the other types. Early initiation of treatment, before the onset of irreversible tissue damage, clearly provides a favorable disease outcome. However, early diagnosis is difficult due to the rarity of these disorders in combination with the wide variety of clinical symptoms. Newborn screening (NBS) is probably the optimal approach, and several screening techniques for different MPSs have been studied. Here we describe a relatively simple and sensitive method to measure levels of dermatan and heparan sulfate derived disaccharides in dried blood spots (DBS) with HPLC-MS/MS, and show that this reliably separates MPS I, II and MPS III newborns from controls and heterozygotes. METHODS Newborn DBS of 11 MPS I, 1 MPS II, and 6 MPS III patients, with phenotypes ranging from severe to relatively attenuated, were collected and levels of dermatan and heparan sulfate derived disaccharides in these DBS were compared with levels in DBS of newborn MPS I and MPS III heterozygotes and controls. RESULTS The levels of dermatan and heparan sulfate derived disaccharides were clearly elevated in all newborn DBS of MPS I, II and III patients when compared to controls. In contrast, DBS of MPS I and III heterozygotes showed similar disaccharide levels when compared to control DBS. CONCLUSIONS Our study demonstrates that measurement of heparan and dermatan sulfate derived disaccharides in DBS may be suitable for NBS for MPS I, II and MPS III. We hypothesize that this same approach will also detect MPS VI, and VII patients, as heparan sulfate and/or dermatan sulfate is also the primary storage products in these disorders.
Collapse
Affiliation(s)
- Jessica de Ruijter
- Department of Pediatrics and Amsterdam Lysosome Centre Sphinx, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|