1
|
Beschle J, Döring M, Kehrer C, Raabe C, Bayha U, Strölin M, Böhringer J, Bevot A, Kaiser N, Bender B, Grimm A, Lang P, Müller I, Krägeloh-Mann I, Groeschel S. Early clinical course after hematopoietic stem cell transplantation in children with juvenile metachromatic leukodystrophy. Mol Cell Pediatr 2020; 7:12. [PMID: 32910272 PMCID: PMC7483683 DOI: 10.1186/s40348-020-00103-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Long-term outcomes of hematopoietic stem cell transplantation (HSCT) in children with juvenile metachromatic leukodystrophy (MLD) have been investigated systematically, while short-term effects of HSCT on the course of the disease remain to be elucidated. Results In this study, the clinical course was evaluated over the first 24 months following HSCT, conducted at our center in 12 children with juvenile MLD (mean follow-up 6.75 years, range 3–13.5) and compared with 35 non-transplanted children with juvenile MLD. Motor function (GMFM-88 and GMFC-MLD), cognitive function (FSIQ), peripheral neuropathy (tibial nerve conduction velocity), and cerebral changes (MLD-MR severity score) were tested prospectively. Seven children remained neurologically stable over a long period, five exhibited rapid disease progression over the first 12 to 18 months after transplantation. In the latter, time from first gross motor symptoms to loss of independent walking was significantly shorter compared with non-transplanted patients at the same stage of disease (p < 0.02). Positive prognostic factors were good motor function (GMFM = 100%, GMFC-MLD = 0) and a low MR severity score (≤ 17) at the time of HSCT. Conclusions Our results show that if disease progression occurs, this happens early on after HSCT and proceeds faster than in non-transplanted children with juvenile MLD, indicating that HSCT may trigger disease progression.
Collapse
Affiliation(s)
- Judith Beschle
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Michaela Döring
- Department for General Pediatrics, Hematology/Oncology, University Children's Hospital, Tübingen, Germany
| | - Christiane Kehrer
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Christa Raabe
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Ute Bayha
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Manuel Strölin
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Judith Böhringer
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Andrea Bevot
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nadja Kaiser
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, Tübingen, Germany
| | | | - Peter Lang
- Department for General Pediatrics, Hematology/Oncology, University Children's Hospital, Tübingen, Germany
| | - Ingo Müller
- Department of Pediatric Hematology and Oncology, University Hospital Eppendorf, Hamburg, Germany
| | | | - Samuel Groeschel
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany.
| |
Collapse
|
2
|
Saute JAM, Souza CFMD, Poswar FDO, Donis KC, Campos LG, Deyl AVS, Burin MG, Vargas CR, Matte UDS, Giugliani R, Saraiva-Pereira ML, Vedolin LM, Gregianin LJ, Jardim LB. Neurological outcomes after hematopoietic stem cell transplantation for cerebral X-linked adrenoleukodystrophy, late onset metachromatic leukodystrophy and Hurler syndrome. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 74:953-966. [PMID: 27991992 DOI: 10.1590/0004-282x20160155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
Abstract
Objective To describe survival and neurological outcomes after HSCT for these disorders. Methods Seven CALD, 2 MLD and 2 MPS-IH patients underwent HSCT between 2007 and 2014. Neurological examinations, magnetic resonance imaging, molecular and biochemical studies were obtained at baseline and repeated when appropriated. Results Favorable outcomes were obtained with 4/5 related and 3/6 unrelated donors. Two patients died from procedure-related complications. Nine transplanted patients were alive after a median of 3.7 years: neurological stabilization was obtained in 5/6 CALD, 1/2 MLD, and one MPS-IH patient. Brain lesions of the MPS-IH patient were reduced four years after HSCT. Conclusion Good outcomes were obtained when HSCT was performed before adulthood, early in the clinical course, and/or from a related donor.
Collapse
Affiliation(s)
- Jonas Alex Morales Saute
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Identificação Genética, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil
| | | | - Fabiano de Oliveira Poswar
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil
| | - Karina Carvalho Donis
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre RS, Brasil
| | - Lillian Gonçalves Campos
- Hospital de Clínicas de Porto Alegre, Serviço de Radiologia, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil
| | | | - Maira Graeff Burin
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil
| | - Carmen Regla Vargas
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Faculdade de Farmacia, Porto Alegre, Brasil
| | - Ursula da Silveira Matte
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Terapia Gênica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética e Biologia Molecular, Porto Alegre RS, Brasil
| | - Roberto Giugliani
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Terapia Gênica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética e Biologia Molecular, Porto Alegre RS, Brasil
| | - Maria Luiza Saraiva-Pereira
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Identificação Genética, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porto Alegre RS, Brasil
| | - Leonardo Modesti Vedolin
- Hospital de Clínicas de Porto Alegre, Serviço de Radiologia, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil
| | - Lauro José Gregianin
- Hospital de Clínicas de Porto Alegre, Serviço de Oncologia Pediátrica, Porto Alegre, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Pediatria, Porto Alegre RS, Brasil
| | - Laura Bannach Jardim
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Identificação Genética, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Medicina Interna, Porto Alegre RS, Brasil
| |
Collapse
|
6
|
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270:658-79. [PMID: 24568703 PMCID: PMC4263653 DOI: 10.1148/radiol.13130531] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.
Collapse
Affiliation(s)
- Gülin Öz
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jeffry R. Alger
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter B. Barker
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Robert Bartha
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alberto Bizzi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Chris Boesch
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Patrick J. Bolan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kevin M. Brindle
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Cristina Cudalbu
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alp Dinçer
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ulrike Dydak
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Uzay E. Emir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jens Frahm
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ramón Gilberto González
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stephan Gruber
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rolf Gruetter
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rakesh K. Gupta
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Arend Heerschap
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Anke Henning
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Hoby P. Hetherington
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Franklyn A. Howe
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra S. Hüppi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ralph E. Hurd
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kejal Kantarci
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dennis W. J. Klomp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Roland Kreis
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Marijn J. Kruiskamp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Martin O. Leach
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alexander P. Lin
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter R. Luijten
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Małgorzata Marjańska
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew A. Maudsley
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dieter J. Meyerhoff
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Carolyn E. Mountford
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Sarah J. Nelson
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - M. Necmettin Pamir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jullie W. Pan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew C. Peet
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Harish Poptani
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stefan Posse
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra J. W. Pouwels
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Eva-Maria Ratai
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian D. Ross
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Tom W. J. Scheenen
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Christian Schuster
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ian C. P. Smith
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian J. Soher
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ivan Tkáč
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Daniel B. Vigneron
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | | |
Collapse
|