1
|
Gripp KW, Robbins KM, Sheffield BS, Lee AF, Patel MS, Yip S, Doyle D, Stabley D, Sol-Church K. Paternal uniparental disomy 11p15.5 in the pancreatic nodule of an infant with Costello syndrome: Shared mechanism for hyperinsulinemic hypoglycemia in neonates with Costello and Beckwith-Wiedemann syndrome and somatic loss of heterozygosity in Costello syndrome driving clonal expansion. Am J Med Genet A 2015; 170:559-64. [PMID: 26572961 DOI: 10.1002/ajmg.a.37471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 11/09/2022]
Abstract
Costello syndrome (CS) entails a cancer predisposition and is caused by activating HRAS mutations, typically arising de novo in the paternal germline. Hypoglycemia is common in CS neonates. A previously reported individual with the rare HRAS p.Gln22Lys had hyperinsulinemic hypoglycemia. Autopsy showed a discrete pancreatic nodule. The morphologic and immunohistochemistry findings, including loss of p57(Kip2) protein, were identical to a focal lesion of congenital hyperinsulinism, however, no KCNJ11 or ABCC8 mutation was identified and germline derived DNA showed no alternation of the maternal or paternal 11p15 alleles. Here we report paternal uniparental disomy (pUPD) within the lesion, similar to the pUPD11p15.5 in Beckwith-Wiedemann syndrome (BWS). The similar extent of the pUPD suggests a similar mechanism driving hyperinsulinemia in both conditions. After coincidental somatic LOH and pUPD, the growth promoting effects of the paternally derived HRAS mutation, in combination with the increased function of the adjacent paternally expressed IGF2, may together result in clonal expansion. Although this somatic LOH within pancreatic tissue resulted in hyperinsulinism, similar LOH in mesenchymal cells may drive embryonal rhabdomyosarcoma (ERMS). Interestingly, biallelic IGF2 expression has been linked to rhabdomyosarcoma tumorigenesis and pUPD11 occurred in all 8 ERMS samples from CS individuals. Somatic KRAS and HRAS mutations occur with comparable frequency in isolated malignancies. Yet, the malignancy risk in CS is notably higher than in Noonan syndrome with a KRAS mutation. It is conceivable that HRAS co-localization with IGF2 and the combined effect of pUPD 11p15.5 on both genes contributes to the oncogenic potential.
Collapse
Affiliation(s)
- Karen W Gripp
- Division of Medical Genetics, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware
| | - Katherine M Robbins
- Biomedical Research, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware
| | | | - Anna F Lee
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Millan S Patel
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Doyle
- Division of Endocrinology, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware
| | - Deborah Stabley
- Biomedical Research, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware
| | - Katia Sol-Church
- Biomedical Research, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware
| |
Collapse
|
2
|
Gardeitchik T, Mohamed M, Fischer B, Lammens M, Lefeber D, Lace B, Parker M, Kim KJ, Lim BC, Häberle J, Garavelli L, Jagadeesh S, Kariminejad A, Guerra D, Leão M, Keski-Filppula R, Brunner H, Nijtmans L, van den Heuvel B, Wevers R, Kornak U, Morava E. Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. Eur J Hum Genet 2014; 22:888-95. [PMID: 23963297 PMCID: PMC4060105 DOI: 10.1038/ejhg.2013.154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
Patients with cutis laxa (CL) have wrinkled, sagging skin with decreased elasticity. Skin symptoms are associated with variable systemic involvement. The most common, genetically highly heterogeneous form of autosomal recessive CL, ARCL2, is frequently associated with variable metabolic and neurological symptoms. Progeroid symptoms, dysmorphic features, hypotonia and psychomotor retardation are highly overlapping in the early phase of these disorders. This makes the genetic diagnosis often challenging. In search for discriminatory symptoms, we prospectively evaluated clinical, neurologic, metabolic and genetic features in our patient cohort referred for suspected ARCL. From a cohort of 26 children, we confirmed mutations in genes associated with ARCL in 16 children (14 probands), including 12 novel mutations. Abnormal glycosylation and gyration abnormalities were mostly, but not always associated with ATP6V0A2 mutations. Epilepsy was most common in ATP6V0A2 defects. Corpus callosum dysgenesis was associated with PYCR1 and ALDH18A1 mutations. Dystonic posturing was discriminatory for PYCR1 and ALDH18A1 defects. Metabolic markers of mitochondrial dysfunction were found in one patient with PYCR1 mutations. So far unreported white matter abnormalities were found associated with GORAB and RIN2 mutations. We describe a large cohort of CL patients with neurologic involvement. Migration defects and corpus callosum hypoplasia were not always diagnostic for a specific genetic defect in CL. All patients with ATP6V0A2 defects had abnormal glycosylation. To conclude, central nervous system and metabolic abnormalities were discriminatory in this genetically heterogeneous group, although not always diagnostic for a certain genetic defect in CL.
Collapse
Affiliation(s)
- Thatjana Gardeitchik
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Miski Mohamed
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Björn Fischer
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Lammens
- Department of Pathology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk Lefeber
- Department of Neurology, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Baiba Lace
- Medical Genetics Clinic, Children's Clinical University Hospital, Riga, Latvia
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Ki-Joong Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Bing C Lim
- Department of Pediatrics, Seoul National University Hospital, Seoul, South Korea
| | - Johannes Häberle
- Department of Pediatrics, University Children's Hospital, Zürich, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Obstetric and Pediatric Department, Santa Maria Nuova Hospital IRCCS, Reggio Emilia, Italy
| | | | | | - Deanna Guerra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Leão
- Pediatric Neurology Unit and Neurogenetics Unit, Hospital S João, Porto, Portugal
| | | | - Han Brunner
- Department of Human Genetics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo Nijtmans
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bert van den Heuvel
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron Wevers
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory for Genetic Endocrine and Metabolic Diseases, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
- FG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eva Morava
- Department of Pediatrics, Institute for Metabolic and Genetic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
- Hayward Genetics Center, Tulane University Medical Center, New Orleans, LA, USA
| |
Collapse
|
3
|
Nicole Weaver K, Wang D, Cnota J, Gardner N, Stabley D, Sol-Church K, Gripp KW, Witte DP, Bove KE, Hopkin RJ. Early-lethal Costello syndrome due to rare HRAS Tandem Base substitution (c.35_36GC>AA; p.G12E)-associated pulmonary vascular disease. Pediatr Dev Pathol 2014; 17:421-30. [PMID: 25133308 PMCID: PMC4294968 DOI: 10.2350/14-05-1488-oa.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Costello syndrome is a rare, autosomal-dominant syndrome caused by activating missense mutations in the Harvey rat sarcoma viral oncogene homolog (HRAS), most often p.G12S. Several rare mutations have consistently been associated with a more severe phenotype that is often lethal in infancy. Cause of death is most often respiratory failure, with hypertrophic cardiomyopathy playing a significant role in morbidity. Impaired fibroblast elastogenesis is thought to contribute to the Costello phenotype, but reports of histologic evidence of disordered elastogenesis at autopsy are limited. We report a patient with Costello syndrome due to a rare tandem base substitution (c.35_36GC>AA) resulting in the p.G12E missense change. The proband died at the age of 3 months from respiratory failure, with minimal evidence of cardiomyopathy. The autopsy disclosed pulmonary vascular dysplasia affecting small arteries and veins associated with abnormal elastin distribution in tortuous dilated arteries and veins, with nonuniform wall thickness and semiobstructive lesions at artery branch points typical of early pulmonary hypertensive vascular disease. Elastic fibers in the dermis were abnormally short and fragmented. This case suggests that disordered elastogenesis in the pulmonary vasculature and undiagnosed (or underdiagnosed) pulmonary hypertension may contribute to morbidity in patients with Costello syndrome.
Collapse
Affiliation(s)
- K. Nicole Weaver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Dehua Wang
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - James Cnota
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Nicholas Gardner
- Biomedical Research, A. I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware, 19803
| | - Deborah Stabley
- Biomedical Research, A. I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware, 19803
| | - Katia Sol-Church
- Biomedical Research, A. I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware, 19803
| | - Karen W. Gripp
- Division of Medical Genetics, A. I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware, 19803
| | - David P. Witte
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kevin E. Bove
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Robert J. Hopkin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|