1
|
Ader F, Heide S, Marzin P, Afenjar A, Diguet F, Chantot Bastaraud S, Rollat-Farnier PA, Sanlaville D, Portnoï MF, Siffroi JP, Schluth-Bolard C. A 14q distal chromoanagenesis elucidated by whole genome sequencing. Eur J Med Genet 2019; 63:103776. [PMID: 31562959 DOI: 10.1016/j.ejmg.2019.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/07/2019] [Accepted: 09/22/2019] [Indexed: 11/19/2022]
Abstract
Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Flavie Ader
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France.
| | - Solveig Heide
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Pauline Marzin
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Alexandra Afenjar
- Unité de neuropédiatrie et pathologie du développement, GHU Paris Est - Hôpital d'Enfants Armand-Trousseau, France
| | - Flavie Diguet
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; GENDEV Team, Neurosciences Research Center of Lyon, INSERM U1028, CNRS UMR5292, UCBL1, 69677, Bron, France
| | - Sandra Chantot Bastaraud
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Pierre-Antoine Rollat-Farnier
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; Cellule bioinformatique de la plateforme NGS, Hospices Civils de Lyon, Bron, France
| | - Damien Sanlaville
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; GENDEV Team, Neurosciences Research Center of Lyon, INSERM U1028, CNRS UMR5292, UCBL1, 69677, Bron, France
| | - Marie-France Portnoï
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Jean-Pierre Siffroi
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Caroline Schluth-Bolard
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; GENDEV Team, Neurosciences Research Center of Lyon, INSERM U1028, CNRS UMR5292, UCBL1, 69677, Bron, France
| |
Collapse
|
2
|
Hartmann L, Stephenson CF, Verkamp SR, Johnson KR, Burnworth B, Hammock K, Brodersen LE, de Baca ME, Wells DA, Loken MR, Zehentner BK. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays. Clin Chem 2014; 60:1558-68. [PMID: 25320376 DOI: 10.1373/clinchem.2014.227785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. METHODS This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. RESULTS Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. CONCLUSIONS Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated.
Collapse
|
3
|
Clinical utility of chromosomal microarray analysis of DNA from buccal cells: detection of mosaicism in three patients. J Genet Couns 2014; 23:922-7. [PMID: 25120037 DOI: 10.1007/s10897-014-9751-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/24/2014] [Indexed: 02/01/2023]
Abstract
Mosaic chromosomal abnormalities are relatively common. However, mosaicism may be missed due to multiple factors including failure to recognize clinical indications and order appropriate testing, technical limitations of diagnostic assays, or sampling tissue (s) in which mosaicism is either not present, or present at very low levels. Blood leukocytes have long been the "gold standard" sample for cytogenetic analysis; however, the culturing process for routine chromosome analysis can complicate detection of mosaicism since the normal cell line may have a growth advantage in culture, or may not be present in the cells that produce metaphases (the lymphocytes). Buccal cells are becoming increasingly utilized for clinical analyses and are proving to have many advantages. Buccal swabs allow for simple and noninvasive DNA collection. When coupled with a chromosomal microarray that contains single nucleotide polymorphic probes, analysis of buccal cells can maximize a clinician's opportunity to detect cytogenetic mosaicism. We present three cases of improved diagnosis of mosaic aberrations using buccal specimens for chromosomal microarray analysis. In each case, the aberration was either undetectable in blood or present at such a low level it likely could have gone undetected. These cases highlight the limitations of certain laboratory methodologies for identifying mosaicism. We also present practice implications for genetic counselors, including clinic workflow changes and counseling approaches based on increasing use of buccal samples.
Collapse
|