1
|
Wang Y, Wang L, Chen X, Liu S, Han W, Yu X, Cao X, Liu X, Wang J. Congenital central hypoventilation syndrome in Chinese population: Analysis of three new cases and review of the literature. Mol Genet Genomic Med 2023; 11:e2267. [PMID: 37712713 PMCID: PMC10724499 DOI: 10.1002/mgg3.2267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare autosomal dominant disease that is mainly caused by PHOX2B mutations. The purpose of this study is to analyze and summarize the clinical and genetic characteristics of CCHS patients in the Chinese population from our study and previous literature. METHODS The potential pathogenic gene mutations of CCHS were identified and verified by next generation sequencing combined with Sanger sequencing, fluorescent probe PCR and capillary electrophoresis. The clinical characteristics and gene mutations of CCHS cases in Chinese population were summarized from our study and previous literature to explore the genotype-phenotype correlations. RESULTS We identified 48 CCHS cases including three new cases from our report in China. Overall, 77.1% of the patients had PHOX2B polyalanine repeat expansion mutations (PARMs), and the remaining 22.9% had 10 distinct PHOX2B non-polyalanine repeat expansion mutations (NPARMs). Compared to those with PARMs, patients with NPARMs were more likely to have premature birth (54.5% vs. 2.8%, p < 0.001) and lower birth weight (33.3% vs. 3.2%, p = 0.030), with statistical significance. The patients with PARMs were more likely to have cardiovascular defects (64.9% vs. 27.3%, p = 0.063), cerebral hemorrhage (29.7% vs. 9.1%, p = 0.322) and seizures (37.8% vs. 9.1%, p = 0.151) than those with NPARMs, with no statistical significance. CONCLUSIONS CCHS patients with PHOX2B NPARMs were more likely to have premature birth and low birth weight, while PHOX2B PARMs tended to be positively associated with the risk of cardiovascular defects, cerebral hemorrhage and seizures in Chinese population.
Collapse
Affiliation(s)
- Yaoyao Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Lina Wang
- Department of Respiratory Medicine, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoShandongChina
| | - Xiaoying Chen
- Department of NICU, Qingdao Women and Children's HospitalQingdao UniversityQingdaoShandongChina
| | - Shiguo Liu
- Medical Genetic Departmentthe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
- Department of Clinical Research Center, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Xinjuan Yu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
- Department of Clinical Research Center, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Xipeng Cao
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Xiuxiang Liu
- Department of NICU, Qingdao Women and Children's HospitalQingdao UniversityQingdaoShandongChina
| | - Jiahui Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| |
Collapse
|
2
|
Harsono M, Chilakala S, Bohn S, Pivnick EK, Pourcyrous M. A Newborn Infant with Congenital Central Hypoventilation Syndrome and Pupillary Abnormalities: A Literature Review. AJP Rep 2022; 12:e139-e143. [PMID: 36187199 PMCID: PMC9522484 DOI: 10.1055/a-1883-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
We present a neonate with early onset apnea and bradycardia in the absence of primary cardiorespiratory and central nervous system disorders that eventually required chronic ventilator support starting at 6 hours of life. Molecular testing of paired-like homeobox 2b (PHOX2B) gene mutation confirmed the diagnosis of congenital central hypoventilation syndrome (CCHS). CCHS is a rare genetic disorder characterized by impaired central respiratory control with or without broad spectrum of autonomic nervous system (ANS) dysregulations. Ocular ANS dysregulation is a rare finding in CCHS individuals, and it is usually discovered later in life. However, the ophthalmic evaluation of this neonate on first day of life revealed persistent mild dilated oval pupils with limited light reactivity.
Collapse
Affiliation(s)
- Mimily Harsono
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Sandeep Chilakala
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Shiva Bohn
- Division of Pediatric Ophthalmology, Department of Ophthalmology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Eniko K Pivnick
- Division of Pediatric Ophthalmology, Department of Ophthalmology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee.,Division of Medical Genetic, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Massroor Pourcyrous
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
3
|
Tovichien P, Rattananont K, Kulthamrongsri N, Chanvanichtrakool M, Yangthara B. Rare cause of neonatal apnea from congenital central hypoventilation syndrome. BMC Pediatr 2022; 22:105. [PMID: 35209861 PMCID: PMC8867765 DOI: 10.1186/s12887-022-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare condition caused by mutations in the Paired-Like Homeobox 2B (PHOX2B) gene. It causes alveolar hypoventilation and autonomic dysregulation. This report aimed to raise awareness of this rare cause of neonatal apnea and hypoventilation as well as described the diagnostic work up to confirm the diagnosis in resource-limited setting where polysomnography for neonate is unavailable. CASE PRESENTATION A late preterm female newborn born from a non-consanguineous primigravida 31-year-old mother had desaturation soon after birth followed by apnea and bradycardia. After becoming clinically stable, she still had extubation failure from apnea without hypercapnic ventilatory response which worsened during non-rapid eye movement (NREM) sleep. After exclusion of other etiologies, we suspected congenital central hypoventilation syndrome and sent genetic testing. The result showed a PHOX2B gene mutation which confirmed the diagnosis of CCHS. We gave the patient's caregivers multidisciplinary home respiratory care training including tracheostomy care, basic life support, and simulation training for respiratory problem solving. Then, the patient was discharged and scheduled for follow-up surveillance for associated conditions. CONCLUSION Diagnosis of CCHS in neonates includes the main clue of the absence of hypercapnic ventilatory response which worsens during non-rapid eye movement (NREM) sleep after exclusion of other causes. Molecular testing for PHOX2B gene mutation was used to confirm the diagnosis.
Collapse
Affiliation(s)
- Prakarn Tovichien
- Division of Pulmonology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | | | | | - Mongkol Chanvanichtrakool
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Buranee Yangthara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
5
|
Mei M, Yang L, Lu Y, Wang L, Cheng G, Cao Y, Chen C, Qian L, Zhou W. Congenital central hypoventilation syndrome in neonates: report of fourteen new cases and a review of the literature. Transl Pediatr 2021; 10:733-745. [PMID: 34012823 PMCID: PMC8107878 DOI: 10.21037/tp-20-303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare autosomal dominant disorder caused by pathogenic variants in paired-like homeobox 2B (PHOX2B) gene. Characteristics of neonatal-onset CCHS cases have not been well assessed. The aim of this study is to expand current knowledge of clinical and genetic features of neonates with CCHS and provide data on the genotype-phenotype correlation. METHODS We made a retrospective analysis of 14 neonates carrying PHOX2B pathogenic variants from 2014 to 2019 and we reviewed previously published neonatal-onset cases. Clinical and genetic data were analyzed. Moreover, genotype-phenotype correlation analysis was performed. RESULTS We identified a total of 60 neonatal-onset CCHS cases (35 males and 25 females) including 14 novel cases from our local cohort. Nearly 20% (18.2%) of the patients were born prematurely. Nearly half (46.2%) of the patients had abnormal family history. Polyhydramnios was observed in 21.3% (10/47) of the patients. About 90% of the patients manifested symptoms of hypoventilation in the first week of life. Fourteen patients (23.3%) were classified as mild-CCHS and the rest were severe-CCHS. Gastrointestinal manifestations were observed in 71.7% of the patients. Approximately twofold more males than females were affected by Hirschprung disease (HSCR)/variant HSCR (75.8% vs. 35%, P=0.003). Neural crest tumor occurred in 9.1% (4/44) patients. Half patients had polyalanine repeat expansion mutations (PARMs) in PHOX2B (seven with 25 PARM, nine with 26 PARM, twelve with 27 PARM, one with 28 PARM and one with 31 PARM) and the other half patients had 23 distinct non-polyalanine repeat expansion mutations (NPARMs) with one novel pathogenic variant (c.684dup). The prevalence of HSCR and mild-CCHS among patients with NPARMs was significantly greater than that of the patients with PARMs. CONCLUSIONS This report provides a large cohort of neonatal-onset CCHS cases. The results indicate that severe hypoventilation and HSCR are frequently observed in this group. NPARMs accounted for half of the cohort with some genotypes tend to be associated with mild phenotype. Molecular testing in neonates with suspicion of CCHS and genetic counseling for CCHS families are highly recommended.
Collapse
Affiliation(s)
- Mei Mei
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Liling Qian
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Pace NP, Pace Bardon M, Borg I. A respiratory/Hirschsprung phenotype in a three-generation family associated with a novel pathogenic PHOX2B splice donor mutation. Mol Genet Genomic Med 2020; 8:e1528. [PMID: 33047879 PMCID: PMC7767558 DOI: 10.1002/mgg3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mutations in the PHOX2B gene cause congenital central hypoventilation syndrome (CCHS), a rare autonomic nervous system dysfunction disorder characterized by a decreased ventilatory response to hypercapnia. Affected subjects develop alveolar hypoventilation requiring ventilatory support particularly during the non-REM phase of sleep. In more severe cases, hypoventilation may extend into wakefulness. CCHS is associated with disorders characterized by the defective migration/differentiation of neural crest derivatives, including aganglionic megacolon or milder gastrointestinal phenotypes, such as constipation. Most cases of CCHS are de novo, caused by heterozygosity for polyalanine repeat expansion mutations (PARMs) in exon 3. About 10% of cases are due to heterozygous non-PARM missense, nonsense or frameshift mutations. METHODS We describe a three-generation Maltese-Caucasian family with a variable respiratory/Hirschsprung phenotype, characterized by chronic constipation, three siblings with Hirschsprung disease necessitating surgery, chronic hypoxia, and alveolar hypoventilation requiring non-invasive ventilation. RESULTS The sequencing of PHOX2B revealed a novel heterozygous c.241+2delT splice variant in exon 1 that segregates with the CCHS/Hirschsprung phenotype in the family. The mutation generates a non-functional splice site with a deleterious effect on protein structure and is pathogenic according to ACMG P VS1, PM2, and PP1 criteria. CONCLUSION This report is significant as no PHOX2B splice-site mutations have been reported. Additionally, it highlights the variability in clinical expression and disease severity of non-PARM mutations.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Isabella Borg
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, Msida, Malta.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
7
|
Trang H, Samuels M, Ceccherini I, Frerick M, Garcia-Teresa MA, Peters J, Schoeber J, Migdal M, Markstrom A, Ottonello G, Piumelli R, Estevao MH, Senecic-Cala I, Gnidovec-Strazisar B, Pfleger A, Porto-Abal R, Katz-Salamon M. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet J Rare Dis 2020; 15:252. [PMID: 32958024 PMCID: PMC7503443 DOI: 10.1186/s13023-020-01460-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Congenital Central Hypoventilation Syndrome (CCHS) is a rare condition characterized by an alveolar hypoventilation due to a deficient autonomic central control of ventilation and a global autonomic dysfunction. Paired-like homeobox 2B (PHOX2B) mutations are found in most of the patients with CCHS. In recent years, the condition has evolved from a life-threatening neonatal onset disorder to include broader and milder clinical presentations, affecting children, adults and families. Genes other than PHOX2B have been found responsible for CCHS in rare cases and there are as yet other unknown genes that may account for the disease. At present, management relies on lifelong ventilatory support and close follow up of dysautonomic progression. BODY: This paper provides a state-of-the-art comprehensive description of CCHS and of the components of diagnostic evaluation and multi-disciplinary management, as well as considerations for future research. CONCLUSION Awareness and knowledge of the diagnosis and management of this rare disease should be brought to a large health community including adult physicians and health carers.
Collapse
Affiliation(s)
- Ha Trang
- Hôpital Universitaire Robert Debré, Centre de référence des maladies respiratoires rares, and Université de Paris, Paris, France
| | - Martin Samuels
- Staffordshire Children’s Hospital, Stoke-on-Trent, Staffs and Great Ormond Street Hospital, London, UK
| | - Isabella Ceccherini
- Istituto Giannina Gaslini, UOSD Laboratory of Genetics and Genomics of Rare Diseases, Genoa, Italy
| | - Matthias Frerick
- Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | | | - Jochen Peters
- Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | | | - Marek Migdal
- Department of Anaesthesiology and Intensive care, Children’s Memorial Health Institute, Warsaw, Poland
| | | | | | - Raffaele Piumelli
- Sleep Disordered Breathing and SIDS Center, Meyer Children’s Hospital, Florence, Italy
| | | | - Irena Senecic-Cala
- University Hospital Centre, Department of Pediatrics, Zagreb and School of Medicine, Zagreb, Croatia
| | - Barbara Gnidovec-Strazisar
- University Children’s Hospital, Department of child, adolescent & developmental neurology, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Andreas Pfleger
- Medical University of Graz, Paediatric Pulmonology and Allergology, Graz, Austria
| | | | | |
Collapse
|
8
|
Yonker LM, Hawley MH, Moschovis PP, Lu M, Kinane TB. Recognizing genetic disease: A key aspect of pediatric pulmonary care. Pediatr Pulmonol 2020; 55:1794-1809. [PMID: 32533909 PMCID: PMC7384240 DOI: 10.1002/ppul.24706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Advancement in technology has improved recognition of genetic etiologies of disease, which has impacted diagnosis and management of rare disease patients in the pediatric pulmonary clinic. This review provides an overview of genetic conditions that are likely to present with pulmonary features and require extensive care by the pediatric pulmonologist. Increased familiarity with these conditions allows for improved care of these patients by reducing time to diagnosis, tailoring management, and prompting further investigation into these disorders.
Collapse
Affiliation(s)
- Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Peter P Moschovis
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Mengdi Lu
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Bachetti T, Ceccherini I. Causative and commonPHOX2Bvariants define a broad phenotypic spectrum. Clin Genet 2019; 97:103-113. [DOI: 10.1111/cge.13633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Tiziana Bachetti
- Laboratorio Neurobiologia dello Sviluppo, Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV)Università di Genova Genova Italy
| | | |
Collapse
|
10
|
Fisher M, Smeiles C, Jnah AJ, Ruiz ME, Difiore T, Sewell K. Congenital Central Hypoventilation Syndrome: A Case-Based Learning Opportunity for Neonatal Clinicians. Neonatal Netw 2019; 38:217-225. [PMID: 31470390 DOI: 10.1891/0730-0832.38.4.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare and sporadic neurocristopathy characterized by alveolar hypoventilation and autonomic nervous system dysfunction. CCHS manifests quickly after birth, initially as respiratory distress. Mortality risk is estimated at 38 percent, with a median age of death of three months of age. A timely and accurate diagnosis is critical. Genetic testing for PHOX2B gene mutations is necessary to confirm the diagnosis; however, laboratory turnaround time often imposes an additional 7-14-day waiting period on an often anxious family. Neonatal clinicians should recognize that families require disease-specific education, emotional support, and time to rehearse daily caregiving in preparation for discharge. Therefore, this article presents the key clinical, pathophysiologic, and diagnostic factors, as well as a discussion of discharge needs. A case report of an infant, born to parents with no known history of CCHS, is included as a case-based learning opportunity for readers.
Collapse
|
11
|
Sivan Y, Zhou A, Jennings LJ, Berry-Kravis EM, Yu M, Zhou L, Rand CM, Weese-Mayer DE. Congenital central hypoventilation syndrome: Severe disease caused by co-occurrence of two PHOX2B variants inherited separately from asymptomatic family members. Am J Med Genet A 2019; 179:503-506. [PMID: 30672101 DOI: 10.1002/ajmg.a.61047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/12/2022]
Abstract
Congenital Central Hypoventilation Syndrome (CCHS) is a rare disease characterized by autonomic nervous system dysregulation. Central hypoventilation is the most prominent and clinically important presentation. CCHS is caused by mutations in paired-like homeobox 2b (PHOX2B) and is inherited in an autosomal dominant pattern. A co-occurrence of two asymptomatic PHOX2B variants with a classical CCHS presentation highlights the importance of clinical PHOX2B testing in parents and family members of all CCHS probands. Despite being an autosomal dominant disease, once a polyalanine repeat expansion mutation has been identified, sequencing of the other allele should also be considered.
Collapse
Affiliation(s)
- Yakov Sivan
- Department of Pediatric Pulmonology and Sleep, Safra Children's Hospital, Sheba Medical Center, Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv-Yafo, Israel
| | - Amy Zhou
- Division of Pediatric Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Lawrence J Jennings
- Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Min Yu
- Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Lili Zhou
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Casey M Rand
- Division of Pediatric Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Debra E Weese-Mayer
- Division of Pediatric Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, Illinois.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
12
|
Maloney MA, Kun SS, Keens TG, Perez IA. Congenital central hypoventilation syndrome: diagnosis and management. Expert Rev Respir Med 2018; 12:283-292. [DOI: 10.1080/17476348.2018.1445970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Melissa A. Maloney
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
| | - Sheila S. Kun
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
| | - Thomas G. Keens
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
- Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Iris A. Perez
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
- Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| |
Collapse
|
13
|
Spielmann M, Hernandez-Miranda LR, Ceccherini I, Weese-Mayer DE, Kragesteen BK, Harabula I, Krawitz P, Birchmeier C, Leonard N, Mundlos S. Mutations inMYO1Hcause a recessive form of central hypoventilation with autonomic dysfunction. J Med Genet 2017; 54:754-761. [DOI: 10.1136/jmedgenet-2017-104765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 11/03/2022]
|
14
|
Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life. Pediatr Res 2017; 81:192-201. [PMID: 27673423 DOI: 10.1038/pr.2016.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
The "bedside-to-bench" Congenital Central Hypoventilation Syndrome (CCHS) research journey has led to increased phenotypic-genotypic knowledge regarding autonomic nervous system (ANS) regulation, and improved clinical outcomes. CCHS is a neurocristopathy characterized by hypoventilation and ANS dysregulation. Initially described in 1970, timely diagnosis and treatment remained problematic until the first large cohort report (1992), delineating clinical presentation and treatment options. A central role of ANS dysregulation (2001) emerged, precipitating evaluation of genes critical to ANS development, and subsequent 2003 identification of Paired-Like Homeobox 2B (PHOX2B) as the disease-defining gene for CCHS. This breakthrough engendered clinical genetic testing, making diagnosis exact and early tracheostomy/artificial ventilation feasible. PHOX2B genotype-CCHS phenotype relationships were elucidated, informing early recognition and timely treatment for phenotypic manifestations including Hirschsprung disease, prolonged sinus pauses, and neural crest tumors. Simultaneously, cellular models of CCHS-causing PHOX2B mutations were developed to delineate molecular mechanisms. In addition to new insights regarding genetics and neurobiology of autonomic control overall, new knowledge gained has enabled physicians to anticipate and delineate the full clinical CCHS phenotype and initiate timely effective management. In summary, from an initial guarantee of early mortality or severe neurologic morbidity in survivors, CCHS children can now be diagnosed early and managed effectively, achieving dramatically improved quality of life as adults.
Collapse
|
15
|
Low KJ, Turnbull AR, Smith KR, Hilliard TN, Hole LJ, Meecham Jones DJ, Williams MM, Donaldson A. A case of congenital central hypoventilation syndrome in a three-generation family with non-polyalanine repeat PHOX2B mutation. Pediatr Pulmonol 2014; 49:E140-3. [PMID: 24799442 DOI: 10.1002/ppul.23051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/27/2014] [Indexed: 11/06/2022]
Abstract
We describe a three generation family in whom multiple individuals are variably affected due to a PHOX2B non-polyalanine repeat mutation. This family demonstrates extreme phenotypic variability and autosomal dominant transmission over three generations not previously reported in the wider literature. Novel findings also inclue a history of recurrent second trimester miscarriage. Pediatr Pulmonol. 2014; 49:E140-E143. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- K J Low
- Department of Clinical Genetics, UHBristol NHS Trust, St Michaels Hospital, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Saiyed R, Rand CM, Carroll MS, Weese-Mayer DE. Hypoventilation Syndromes of Infancy, Childhood, and Adulthood. Sleep Med Clin 2014. [DOI: 10.1016/j.jsmc.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Bachetti T, Di Duca M, Della Monica M, Grappone L, Scarano G, Ceccherini I. Recurrence of CCHS associated PHOX2B poly-alanine expansion mutation due to maternal mosaicism. Pediatr Pulmonol 2014; 49:E45-7. [PMID: 23460545 DOI: 10.1002/ppul.22790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/20/2013] [Indexed: 11/12/2022]
Abstract
Heterozygous in frame trinucleotide duplications within the PHOX2B gene, leading to poly-alanine expansions, cause Congenital Central Hypoventilation Syndrome. Here we report about a CCHS patient, carrying a +13Ala PHOX2B expansion, whose asymptomatic mother resulted with a low level of mosaicism for the same mutation in peripheral blood cells. Her second pregnancy ended with the spontaneous miscarriage of a fetus who had inherited the PHOX2B mutation, thus confirming germline mosaicism in the mother and the need of proper genetic counseling to CCHS families.
Collapse
Affiliation(s)
- Tiziana Bachetti
- U.O.C. Medical Genetics, Institute Giannina Gaslini, Genova, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Rand CM, Patwari PP, Carroll MS, Weese-Mayer DE. Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation. Semin Pediatr Neurol 2013; 20:44-55. [PMID: 23465774 DOI: 10.1016/j.spen.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Long considered a rare and unique disorder of respiratory control, congenital central hypoventilation syndrome has recently been further distinguished as a disorder of autonomic regulation. Similarly, more recent evidence suggests that sudden infant death syndrome is also a disorder of autonomic regulation. Congenital central hypoventilation syndrome typically presents in the newborn period with alveolar hypoventilation, symptoms of autonomic dysregulation and, in a subset of cases, Hirschsprung disease or tumors of neural crest origin or both. Genetic investigation identified PHOX2B, a crucial gene during early autonomic development, as disease defining for congenital central hypoventilation syndrome. Although sudden infant death syndrome is most likely defined by complex multifactorial genetic and environmental interactions, it is also thought to result from central deficits in the control of breathing and autonomic regulation. The purpose of this article is to review the current understanding of these autonomic disorders and discuss the influence of this information on clinical practice and future research directions.
Collapse
Affiliation(s)
- Casey M Rand
- Center for Autonomic Medicine in Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|