1
|
Mizumoto S, Yamada S. Histories of Dermatan Sulfate Epimerase and Dermatan 4- O-Sulfotransferase from Discovery of Their Enzymes and Genes to Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2023; 14:509. [PMID: 36833436 PMCID: PMC9957132 DOI: 10.3390/genes14020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Dermatan sulfate (DS) and its proteoglycans are essential for the assembly of the extracellular matrix and cell signaling. Various transporters and biosynthetic enzymes for nucleotide sugars, glycosyltransferases, epimerase, and sulfotransferases, are involved in the biosynthesis of DS. Among these enzymes, dermatan sulfate epimerase (DSE) and dermatan 4-O-sulfotranserase (D4ST) are rate-limiting factors of DS biosynthesis. Pathogenic variants in human genes encoding DSE and D4ST cause the musculocontractural type of Ehlers-Danlos syndrome, characterized by tissue fragility, joint hypermobility, and skin hyperextensibility. DS-deficient mice exhibit perinatal lethality, myopathy-related phenotypes, thoracic kyphosis, vascular abnormalities, and skin fragility. These findings indicate that DS is essential for tissue development as well as homeostasis. This review focuses on the histories of DSE as well as D4ST, and their knockout mice as well as human congenital disorders.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | |
Collapse
|
2
|
Syx D, Delbaere S, Bui C, De Clercq A, Larson G, Mizumoto S, Kosho T, Fournel-Gigleux S, Malfait F. Alterations in glycosaminoglycan biosynthesis associated with the Ehlers-Danlos syndromes. Am J Physiol Cell Physiol 2022; 323:C1843-C1859. [PMID: 35993517 DOI: 10.1152/ajpcell.00127.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to β4GalT7 or β3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ostend, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
The Specific Role of Dermatan Sulfate as an Instructive Glycosaminoglycan in Tissue Development. Int J Mol Sci 2022; 23:ijms23137485. [PMID: 35806490 PMCID: PMC9267682 DOI: 10.3390/ijms23137485] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
The crucial roles of dermatan sulfate (DS) have been demonstrated in tissue development of the cutis, blood vessels, and bone through construction of the extracellular matrix and cell signaling. Although DS classically exerts physiological functions via interaction with collagens, growth factors, and heparin cofactor-II, new functions have been revealed through analyses of human genetic disorders as well as of knockout mice with loss of DS-synthesizing enzymes. Mutations in human genes encoding the epimerase and sulfotransferase responsible for the biosynthesis of DS chains cause connective tissue disorders including spondylodysplastic type Ehlers–Danlos syndrome, characterized by skin hyperextensibility, joint hypermobility, and tissue fragility. DS-deficient mice show perinatal lethality, skin fragility, vascular abnormalities, thoracic kyphosis, myopathy-related phenotypes, acceleration of nerve regeneration, and impairments in self-renewal and proliferation of neural stem cells. These findings suggest that DS is essential for tissue development in addition to the assembly of collagen fibrils in the skin, and that DS-deficient knockout mice can be utilized as models of human genetic disorders that involve impairment of DS biosynthesis. This review highlights a novel role of DS in tissue development studies from the past decade.
Collapse
|
4
|
Minatogawa M, Unzaki A, Morisaki H, Syx D, Sonoda T, Janecke AR, Slavotinek A, Voermans NC, Lacassie Y, Mendoza-Londono R, Wierenga KJ, Jayakar P, Gahl WA, Tifft CJ, Figuera LE, Hilhorst-Hofstee Y, Maugeri A, Ishikawa K, Kobayashi T, Aoki Y, Ohura T, Kawame H, Kono M, Mochida K, Tokorodani C, Kikkawa K, Morisaki T, Kobayashi T, Nakane T, Kubo A, Ranells JD, Migita O, Sobey G, Kaur A, Ishikawa M, Yamaguchi T, Matsumoto N, Malfait F, Miyake N, Kosho T. Clinical and molecular features of 66 patients with musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS- CHST14). J Med Genet 2021; 59:865-877. [PMID: 34815299 PMCID: PMC9411915 DOI: 10.1136/jmedgenet-2020-107623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.
Collapse
Affiliation(s)
- Mari Minatogawa
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Ai Unzaki
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Problem-Solving Oriented Training Program for Advanced Medical Personnel: NGSD (Next Generation Super Doctor) Project, Matsumoto, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tohru Sonoda
- Department of Occupational Therapy, School of Health and Science, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Yves Lacassie
- Department of Pediatrics, Louisiana State University Health Science Center, New Orleans, LA, USA.,Division of Clinical Genetics and Department of Genetics, Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Klaas J Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - William A Gahl
- Undiagnosed Diseases Program, Office of the NIH Director, National Institutes of Health, Bethesda, MD, USA.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- Undiagnosed Diseases Program, Office of the NIH Director, National Institutes of Health, Bethesda, MD, USA.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luis E Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | | - Alessandra Maugeri
- Department of Clinical Genetics, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Ken Ishikawa
- Department of Pediatrics, Iwate Medical University, Morioka, Japan
| | - Tomoko Kobayashi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.,Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Senda, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Toshihiro Ohura
- Division of Clinical Laboratory, Sendai City Hospital, Sendai, Japan
| | - Hiroshi Kawame
- Division of Genomic Medicine Support and Genetic Counseling, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Miyagi Children's Hospital, Sendai, Japan.,Division of Clinical Genetics, Jikei University Hospital, Tokyo, Japan
| | - Michihiro Kono
- Department of Dermatology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan.,Department of Dermatology and Plastic Surgery, Akita University Graduate School of Medicine School of Medicine, Akita, Akita, Japan
| | - Kosuke Mochida
- Department of Dermatology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Chiho Tokorodani
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Kiyoshi Kikkawa
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Internal Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Takaya Nakane
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Ohsuke Migita
- Department of Clinical Genetics, St. Marianna University, School of Medicine, Kawasaki, Japan
| | - Glenda Sobey
- EDS National Diagnostic Service, Sheffield Children's Hospital, Sheffield, UK
| | - Anupriya Kaur
- Department of Pediatrics (Genetics Division), Advanced Pediatric Cente, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Masumi Ishikawa
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Tomomi Yamaguchi
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan .,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Division of Clinical Sequencing, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| |
Collapse
|
5
|
Oral Conditions and Oral Health-Related Quality of Life of People with Ehlers-Danlos Syndromes (EDS): A Questionnaire-Based Cross-Sectional Study. ACTA ACUST UNITED AC 2020; 56:medicina56090448. [PMID: 32899664 PMCID: PMC7559544 DOI: 10.3390/medicina56090448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Background and objective: To date, there have only been a few studies on oral health-related quality of life (OHRQoL) of people with Ehlers-Danlos syndromes (EDS) and oral conditions. The aim of this study was, therefore, to analyze the OHRQoL of people with EDS from their own point of view as well as obtain information about their age at the time of the diagnosis, the period of time until diagnosis, and the presence of oral conditions (if any) and their association with oral health quality. Methods: The study was designed as an anonymous questionnaire-based cross-sectional study. We conducted a descriptive analysis of the Oral Health Impact Profile-14 (OHIP-14) scores, age of the participants, age at diagnosis, and the time-period between the first signs of the disease and the diagnosis of EDS. To verify the differences in OHIP-14 scores between patients with and without oral conditions, a Mann-Whitney U test was performed. A multivariate quantile (median) regression analysis was performed to evaluate the effect of different general characteristics (gender, age, and the presence of oral conditions) on the OHIP 14 scores. Furthermore, using a Mann-Whitney U test, the influence of different oral conditions was verified by testing the differences between patients without any oral conditions and patients with a specific diagnosis. Results: A total of 79 evaluable questionnaires from 66 female (83.5%) and 13 male (16.5%) participants were analyzed. On average, after the first condition, it takes 18.36 years before EDS are correctly diagnosed. Oral conditions were described by 69.6% of the participants. The median (interquartile range) OHIP-14 score was eight (ten) points for patients without oral conditions and 19 (15) for patients with oral conditions. The multivariable quantile regression shows a statistical notable association between OHIP-14 score and oral conditions (p < 0.001). OHIP-14 scores for dysgnathia, periodontitis, TMD (Temporomandibular dysfunction), a high-arched palate, malocclusion, and the anomaly of tooth formation were statistical notably different between the participants with and the participants without oral conditions. Conclusions: Long diagnostic pathways seem to be a typical problem in patients with EDS. Oral conditions associated with the underlying disease occurred regularly and showed a negative correlation with OHRQoL.
Collapse
|
6
|
Hirose T, Mizumoto S, Hashimoto A, Takahashi Y, Yoshizawa T, Nitahara-Kasahara Y, Takahashi N, Nakayama J, Takehana K, Okada T, Nomura Y, Yamada S, Kosho T, Watanabe T. Systematic investigation of the skin in Chst14-/- mice: A model for skin fragility in musculocontractural Ehlers-Danlos syndrome caused by CHST14 variants (mcEDS-CHST14). Glycobiology 2020; 31:137-150. [PMID: 32601684 DOI: 10.1093/glycob/cwaa058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023] Open
Abstract
Loss-of-function variants in CHST14 cause a dermatan 4-O-sulfotransferase deficiency named musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), resulting in complete depletion of the dermatan sulfate moiety of decorin glycosaminoglycan (GAG) chains, which is replaced by chondroitin sulfate. Recently, we uncovered structural alteration of GAG chains in the skin of patients with mcEDS-CHST14. Here, we conducted the first systematic investigation of Chst14 gene-deleted homozygote (Chst14-/-) mice. We used skin samples of wild-type (Chst14+/+) and Chst14-/- mice. Mechanical fragility of the skin was measured with a tensile test. Pathology was observed using light microscopy, decorin immunohistochemistry and electron microscopy (EM) including cupromeronic blue (CB) staining. Quantification of chondroitin sulfate and dermatan sulfate was performed using enzymatic digestion followed by anion-exchange HPLC. In Chst14-/- mice, skin tensile strength was significantly decreased compared with that in Chst14+/+ mice. EM showed that collagen fibrils were oriented in various directions to form disorganized collagen fibers in the reticular layer. Through EM-based CB staining, rod-shaped linear GAG chains were found to be attached at one end to collagen fibrils and protruded outside of the fibrils, in contrast to them being round and wrapping the collagen fibrils in Chst14+/+ mice. A very low level of dermatan sulfate disaccharides was detected in the skin of Chst14-/- mice by anion-exchange chromatography. Chst14-/- mice, exhibiting similar abnormalities in the GAG structure of decorin and collagen networks in the skin, could be a reasonable model for skin fragility of patients with mcEDS-CHST14, shedding light on the role of dermatan sulfate in maintaining skin strength.
Collapse
Affiliation(s)
- Takuya Hirose
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Ayana Hashimoto
- Department of Applied Protein Chemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Yuki Takahashi
- Department of Medical Genetics, Shinshu University Schoolof Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo 113-0022, Japan
| | - Naoki Takahashi
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Kazushige Takehana
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo 113-0022, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshihiro Nomura
- Department of Applied Protein Chemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University Schoolof Medicine, Matsumoto, Nagano 390-8621, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan.,Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
7
|
Kosho T, Mizumoto S, Watanabe T, Yoshizawa T, Miyake N, Yamada S. Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2019; 11:genes11010043. [PMID: 31905796 PMCID: PMC7017038 DOI: 10.3390/genes11010043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Musculocontractural Ehlers–Danlos Syndome (mcEDS) is a type of EDS caused by biallelic pathogenic variants in the gene for carbohydrate sulfotransferase 14/dermatan 4-O-sulfotransferase 1 (CHST14/D4ST1, mcEDS-CHST14), or in the gene for dermatan sulfate epimerase (DSE, mcEDS-DSE). Thus far, 41 patients from 28 families with mcEDS-CHST14 and five patients from four families with mcEDS-DSE have been described in the literature. Clinical features comprise multisystem congenital malformations and progressive connective tissue fragility-related manifestations. This review outlines recent advances in understanding the pathophysiology of mcEDS. Pathogenic variants in CHST14 or DSE lead to reduced activities of relevant enzymes, resulting in a negligible amount of dermatan sulfate (DS) and an excessive amount of chondroitin sulfate. Connective tissue fragility is presumably attributable to a compositional change in the glycosaminoglycan chains of decorin, a major DS-proteoglycan in the skin that contributes to collagen fibril assembly. Collagen fibrils in affected skin are dispersed in the papillary to reticular dermis, whereas those in normal skin are regularly and tightly assembled. Glycosaminoglycan chains are linear in affected skin, stretching from the outer surface of collagen fibrils to adjacent fibrils; glycosaminoglycan chains are curved in normal skin, maintaining close contact with attached collagen fibrils. Homozygous (Chst14−/−) mice have been shown perinatal lethality, shorter fetal length and vessel-related placental abnormalities. Milder phenotypes in mcEDS-DSE might be related to a smaller fraction of decorin DS, potentially through residual DSE activity or compensation by DSE2 activity. These findings suggest critical roles of DS and DS-proteoglycans in the multisystem development and maintenance of connective tissues, and provide fundamental evidence to support future etiology-based therapies.
Collapse
Affiliation(s)
- Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto 390-8621, Japan
- Research Center for Supports to Advanced Science, Matsumoto 390-8621, Japan
- Correspondence: ; Tel.: +81-263-37-2618; Fax: +81-263-37-2619
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.); (S.Y.)
| | - Takafumi Watanabe
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto 390-8621, Japan;
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.); (S.Y.)
| |
Collapse
|
8
|
Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochim Biophys Acta Gen Subj 2019; 1863:623-631. [DOI: 10.1016/j.bbagen.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
|
9
|
Uehara M, Kosho T, Yamamoto N, Takahashi HE, Shimakura T, Nakayama J, Kato H, Takahashi J. Spinal manifestations in 12 patients with musculocontractural Ehlers-Danlos syndrome caused by CHST14/D4ST1 deficiency (mcEDS-CHST14). Am J Med Genet A 2018; 176:2331-2341. [PMID: 30195269 DOI: 10.1002/ajmg.a.40507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/01/2023]
Abstract
Musculocontractural Ehlers-Danlos syndrome caused by mutations in CHST14 (mcEDS-CHST14) is a recently delineated disorder, characterized by craniofacial, skeletal, visceral, and ocular malformations; and progressive cutaneous, skeletal, vascular, and visceral fragility-related manifestations. Spinal lesions, though one of the most serious complications, have not been investigated systematically. In this study, we report detailed and comprehensive information about spinal lesions of 12 patients with a mean age at the first visit of 13.4 years. Eight patients (66.7%) had scoliosis with a Cobb angle ≥10°, including one with severe scoliosis with a Cobb angle ≥45°. Five patients (41.7%) had kyphosis at the thoracolumbar junction with a kyphotic angle ≥20°. Three patients (25%) developed severe thoracolumbar kyphosis with a kyphotic angle ≥50° accompanied by thoracic lordosis with a wedge-like vertebral deformity and anterior vertebral osteophyte at the thoracolumbar junction, and two of them underwent surgical correction: complicated by fistula formation in one and performed safely and effectively through two-staged operation in the other. Six patients (50.0%) had cervical kyphosis, all of whom except one had kyphosis ≥20° at the thoracolumbar level. Two patients (16.7%) had atlantoaxial subluxation, and 10 patients (83.3%) had cervical vertebral malformations. Patients with mcEDS-CHST14 are susceptible to develop scoliosis, thoracolumbar kyphosis, and cervical kyphosis; and are recommended to have regular surveillance including total spine radiology. The present findings also suggest the critical role of dermatan sulfate in the development and maintenance of the spine.
Collapse
Affiliation(s)
- Masashi Uehara
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
10
|
Mizumoto S. Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1812.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
11
|
Brady AF, Demirdas S, Fournel-Gigleux S, Ghali N, Giunta C, Kapferer-Seebacher I, Kosho T, Mendoza-Londono R, Pope MF, Rohrbach M, Van Damme T, Vandersteen A, van Mourik C, Voermans N, Zschocke J, Malfait F. The Ehlers-Danlos syndromes, rare types. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:70-115. [PMID: 28306225 DOI: 10.1002/ajmg.c.31550] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ehlers-Danlos syndromes comprise a clinically and genetically heterogeneous group of heritable connective tissue disorders, which are characterized by joint hypermobility, skin hyperextensibility, and tissue friability. In the Villefranche Nosology, six subtypes were recognized: The classical, hypermobile, vascular, kyphoscoliotic, arthrochalasis, and dermatosparaxis subtypes of EDS. Except for the hypermobile subtype, defects had been identified in fibrillar collagens or in collagen-modifying enzymes. Since 1997, a whole spectrum of novel, clinically overlapping, rare EDS-variants have been delineated and genetic defects have been identified in an array of other extracellular matrix genes. Advances in molecular testing have made it possible to now identify the causative mutation for many patients presenting these phenotypes. The aim of this literature review is to summarize the current knowledge on the rare EDS subtypes and highlight areas for future research. © 2017 Wiley Periodicals, Inc.
Collapse
|
12
|
D'hondt S, Van Damme T, Malfait F. Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: a systematic review. Genet Med 2017; 20:562-573. [PMID: 28981071 PMCID: PMC5993673 DOI: 10.1038/gim.2017.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose Within the spectrum of the Ehlers-Danlos syndromes (EDS), vascular complications are usually associated with the vascular subtype of EDS. Vascular complications are also observed in other EDS subtypes, but the reports are anecdotal and the information is dispersed. To better document the nature of vascular complications among “nonvascular” EDS subtypes, we performed a systematic review. Methods We queried three databases for English-language studies from inception until May 2017, documenting both phenotypes and genotypes of patients with nonvascular EDS subtypes. The outcome included the number and nature of vascular complications. Results A total of 112 papers were included and data were collected from 467 patients, of whom 77 presented with a vascular phenotype. Severe complications included mainly hematomas (53%), frequently reported in musculocontractural and classical-like EDS; intracranial hemorrhages (18%), with a high risk in dermatosparaxis EDS; and arterial dissections (16%), frequently reported in kyphoscoliotic and classical EDS. Other, more minor, vascular complications were reported in cardiac-valvular, arthrochalasia, spondylodysplastic, and periodontal EDS. Conclusion Potentially life-threatening vascular complications are a rare but important finding in several nonvascular EDS subtypes, highlighting a need for more systematic documentation. This review will help familiarize clinicians with the spectrum of vascular complications in EDS and guide follow-up and management.
Collapse
Affiliation(s)
- Sanne D'hondt
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders. Pharmaceuticals (Basel) 2017; 10:ph10020034. [PMID: 28346368 PMCID: PMC5490391 DOI: 10.3390/ph10020034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs) have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.
Collapse
|
14
|
Mizumoto S, Kosho T, Hatamochi A, Honda T, Yamaguchi T, Okamoto N, Miyake N, Yamada S, Sugahara K. Defect in dermatan sulfate in urine of patients with Ehlers-Danlos syndrome caused by a CHST14/D4ST1 deficiency. Clin Biochem 2017; 50:670-677. [PMID: 28238810 DOI: 10.1016/j.clinbiochem.2017.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Dermatan sulfate (DS) plays a number of roles in a wide range of biological activities such as cell signaling and tissue morphogenesis through interactions with various extracellular matrix proteins including collagen. Mutations in the carbohydrate sulfotransferase 14 gene (CHST14) encoding CHST14/dermatan 4-O-sulfotransferase-1 (D4ST1), which is responsible for the biosynthesis of DS, cause a recently delineated form of Ehlers-Danlos syndrome (EDS, musculocontractural type 1), an autosomal recessive connective tissue disorder characterized by congenital malformations (specific craniofacial features, and congenital multiple contractures) and progressive fragility-related complications (skin hyperextensibility, bruisability, and fragility with atrophic scars; recurrent dislocations; progressive talipes or spinal deformities; and large subcutaneous hematomas). In an attempt to develop a diagnostic screening method for this type of EDS, the amount of DS in the urine of patients was analyzed. METHODS Urinary DS was quantified by an anion-exchange chromatography after treatment with DS-specific degrading enzyme. RESULTS DS was not detected in the urine of patients with homo- or compound heterozygous mutations in CHST14. These results suggest that the quantification of DS in urine is applicable to an initial diagnosis of DS-defective EDS. CONCLUSIONS This is the first study to perform a urinary disaccharide compositional analysis of chondroitin sulfate (CS)/DS chains in patients with EDS caused by a CHST14/D4ST1 deficiency, and demonstrated the absence of DS chains. This result suggests systemic DS depletion in this disorder, and also proposes the usefulness of a urinary disaccharide compositional analysis of CS/DS chains as a non-invasive screening method for this disorder.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Atsushi Hatamochi
- Department of Dermatology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tomoko Honda
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Yamaguchi
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan; Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
15
|
Niederhoffer KY, Fahiminiya S, Eydoux P, Mawson J, Nishimura G, Jerome-Majewska LA, Patel MS. Diagnosis of Van den Ende-Gupta syndrome: Approach to the Marden-Walker-like spectrum of disorders. Am J Med Genet A 2016; 170:2310-21. [DOI: 10.1002/ajmg.a.37831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Karen Y. Niederhoffer
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics; Pediatrics, McGill University; Montreal Quebec Canada
| | - Patrice Eydoux
- Department of Pathology Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - John Mawson
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - Gen Nishimura
- Department of Orthopaedic Surgery; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Loydie A. Jerome-Majewska
- Department of Human Genetics; Pediatrics, McGill University; Montreal Quebec Canada
- Pediatrics, McGill University; Montreal Quebec Canada
| | - Millan S. Patel
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
16
|
Kosho T. CHST14/D4ST1 deficiency: New form of Ehlers-Danlos syndrome. Pediatr Int 2016; 58:88-99. [PMID: 26646600 DOI: 10.1111/ped.12878] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/30/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022]
Abstract
Carbohydrate sulfotransferase 14/dermatan 4-O-sulfotransferase-1 (CHST14/D4ST1) deficiency represents a specific form of Ehlers-Danlos syndrome (EDS) caused by recessive loss-of-function mutations in CHST14. The disorder has been independently termed "adducted thumb-clubfoot syndrome", "EDS, Kosho type", and "EDS, musculocontractural type". To date, 31 affected patients from 21 families have been described. Clinically, CHST14/D4ST1 deficiency is characterized by multiple congenital malformations (craniofacial features including large fontanelle, hypertelorism, short and downslanting palpebral fissures, blue sclerae, short nose with hypoplastic columella, low-set and rotated ears, high palate, long philtrum, thin upper lip vermilion, small mouth, and micro-retrognathia; multiple congenital contractures including adduction-flexion contractures and talipes equinovarus as well as other visceral or ophthalmological malformations) and progressive multisystem fragility-related complications (skin hyperextensibility, bruisability, and fragility with atrophic scars; recurrent dislocations; progressive talipes or spinal deformities; pneumothorax or pneumohemothorax; large subcutaneous hematomas; and diverticular perforation). Etiologically, multisystem fragility is presumably caused by impaired assembly of collagen fibrils resulting from loss of dermatan sulfate (DS) in the decorin glycosaminoglycan side chain that promotes electrostatic binding between collagen fibrils. This is the first reported human disorder that specifically affects biosynthesis of DS. Its clinical characteristics indicate that CHST14/D4ST1 and, more fundamentally, DS, play a critical role in fetal development and maintenance of connective tissues in multiple organs. Considering that patients with CHST14/D4ST1 deficiency develop progressive multisystem fragility-related manifestations, establishment of a comprehensive and detailed natural history and health-care guidelines as well as further elucidation of the pathophysiology in view of future etiology-based therapy are crucial.
Collapse
Affiliation(s)
- Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
17
|
Janecke AR, Li B, Boehm M, Krabichler B, Rohrbach M, Müller T, Fuchs I, Golas G, Katagiri Y, Ziegler SG, Gahl WA, Wilnai Y, Zoppi N, Geller HM, Giunta C, Slavotinek A, Steinmann B. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A 2015; 170A:103-15. [PMID: 26373698 DOI: 10.1002/ajmg.a.37383] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with bi-allelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients had mildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria.,Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Ben Li
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California
| | - Manfred Boehm
- Translational Medicine Branch NHLBI-NIH, Bethesda, Maryland
| | - Birgit Krabichler
- Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Marianne Rohrbach
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Thomas Müller
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria
| | - Irene Fuchs
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria
| | - Gretchen Golas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shira G Ziegler
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yael Wilnai
- Division of Medical Genetics, Department of Pediatrics, Stanford University Medical Center, Stanford, California
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, Medical Faculty, University of Brescia, Brescia, Italy
| | - Herbert M Geller
- Developmental Neurobiology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Cecilia Giunta
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California
| | - Beat Steinmann
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
18
|
Syx D, Van Damme T, Symoens S, Maiburg MC, van de Laar I, Morton J, Suri M, Del Campo M, Hausser I, Hermanns-Lê T, De Paepe A, Malfait F. Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum Mutat 2015; 36:535-47. [PMID: 25703627 DOI: 10.1002/humu.22774] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/12/2015] [Indexed: 01/16/2023]
Abstract
Bi-allelic variants in CHST14, encoding dermatan 4-O-sulfotransferase-1 (D4ST1), cause musculocontractural Ehlers-Danlos syndrome (MC-EDS), a recessive disorder characterized by connective tissue fragility, craniofacial abnormalities, congenital contractures, and developmental anomalies. Recently, the identification of bi-allelic variants in DSE, encoding dermatan sulfate epimerase-1 (DS-epi1), in a child with MC-EDS features, suggested locus heterogeneity for this condition. DS-epi1 and D4ST1 are crucial for biosynthesis of dermatan sulfate (DS) moieties in the hybrid chondroitin sulfate (CS)/DS glycosaminoglycans (GAGs). Here, we report four novel families with severe MC-EDS caused by unique homozygous CHST14 variants and the second family with a homozygous DSE missense variant, presenting a somewhat milder MC-EDS phenotype. The glycanation of the dermal DS proteoglycan decorin is impaired in fibroblasts from D4ST1- as well as DS-epi1-deficient patients. However, in D4ST1-deficiency, the decorin GAG is completely replaced by CS, whereas in DS-epi1-deficiency, still some DS moieties are present. The multisystemic abnormalities observed in our patients support a tight spatiotemporal control of the balance between CS and DS, which is crucial for multiple processes including cell differentiation, organ development, cell migration, coagulation, and connective tissue integrity.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
20
|
Miyake N, Kosho T, Matsumoto N. Ehlers–Danlos Syndrome Associated with Glycosaminoglycan Abnormalities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 802:145-59. [DOI: 10.1007/978-94-007-7893-1_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Ghani M, Sato C, Lee JH, Reitz C, Moreno D, Mayeux R, St George-Hyslop P, Rogaeva E. Evidence of recessive Alzheimer disease loci in a Caribbean Hispanic data set: genome-wide survey of runs of homozygosity. JAMA Neurol 2013; 70:1261-7. [PMID: 23978990 PMCID: PMC3991012 DOI: 10.1001/jamaneurol.2013.3545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding. OBJECTIVE To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations. DESIGN We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses. SETTING A whole-genome case-control ROH study. PARTICIPANTS A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants. EXPOSURE Alzheimer disease risk genes. MAIN OUTCOMES AND MEASURES We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection. RESULTS In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for multiple testing (empirical P value 1 [EMP1], .0001; EMP2, .002; 21 AD cases vs 2 controls). Among the African Hispanic subset, the most significant but nominal association was observed for CTNNA3, a well-known AD gene candidate (EMP1, .002; 10 AD cases vs 0 controls). CONCLUSIONS AND RELEVANCE Our results show that ROHs could significantly contribute to the etiology of AD. Future studies would require the analysis of larger, relatively inbred data sets that might reveal novel recessive AD genes. The next step is to conduct sequencing of top significant loci in a subset of samples with overlapping ROHs.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York3Department of Epidemiolo
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada5Cambridge Institute for Medical Research and Department of Clinical Neuroscienc
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
A clinical evaluation tool for SNP arrays, especially for autosomal recessive conditions in offspring of consanguineous parents. Genet Med 2012; 15:354-60. [PMID: 23100014 PMCID: PMC3908554 DOI: 10.1038/gim.2012.136] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: This report describes a fast online tool to accelerate and improve clinical interpretation of single nucleotide polymorphism array results for diagnostic purposes, when consanguinity or inbreeding is identified. Methods: We developed a web-based program that permits entry of regions of homozygosity and, using OMIM, UCSC, and NCBI databases, retrieves genes within these regions as well as their associated autosomal recessive disorders. Relevant OMIM Clinical Synopses can be searched, using key clinical terms permitting further filtering for candidate genes and disorders. Results: The tool aids the clinician by arriving at a short list of relevant candidate disorders, guiding the continued diagnostic work-up. Its efficacy is illustrated by presenting seven patients who were diagnosed using this tool. Conclusion: The online single nucleotide polymorphism array evaluation tool rapidly and systematically identifies relevant genes and associated conditions mapping to identified regions of homozygosity. The built-in OMIM clinical feature search allows the user to further filter to reach a short list of candidate conditions relevant for the diagnosis, making it possible to strategize more focused diagnostic testing. The tabulated results can be downloaded and saved to the desktop in an Excel format. Its efficacy is illustrated by providing a few clinical examples.
Collapse
|