1
|
Casasnovas-Nieves JJ, Rodríguez Y, Franco HL, Cadilla CL. Mechanisms of Regulation of the CHRDL1 Gene by the TWIST2 and ADD1/SREBP1c Transcription Factors. Genes (Basel) 2023; 14:1733. [PMID: 37761873 PMCID: PMC10530651 DOI: 10.3390/genes14091733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Setleis syndrome (SS) is a rare focal facial dermal dysplasia caused by recessive mutations in the basic helix-loop-helix (bHLH) transcription factor, TWIST2. Expression microarray analysis showed that the chordin-like 1 (CHRDL1) gene is up-regulated in dermal fibroblasts from three SS patients with the Q119X TWIST2 mutation. METHODS Putative TWIST binding sites were found in the upstream region of the CHRDL1 gene and examined by electrophoretic mobility shift (EMSA) and reporter gene assays. RESULTS EMSAs showed specific binding of TWIST1 and TWIST2 homodimers, as well as heterodimers with E12, to the more distal E-boxes. An adjoining E-box was bound by ADD1/SREBP1c. EMSA analysis suggested that TWIST2 and ADD1/SREBP1c could compete for binding. Luciferase (luc) reporter assays revealed that the CHRDL1 gene upstream region drives its expression and ADD1/SREBP1c increased it 2.6 times over basal levels. TWIST2, but not the TWIST2-Q119X mutant, blocked activation by ADD1/SREBP1c, but overexpression of TWIST2-Q119X increased luc gene expression. In addition, EMSA competition assays showed that TWIST2, but not TWIST1, competes with ADD1/SREBP1c for DNA binding to the same site. CONCLUSIONS Formation of an inactive complex between the TWIST2 Q119X and Q65X mutant proteins and ADD1/SREBP1c may prevent repressor binding and allow the binding of other regulators to activate CHRDL1 gene expression.
Collapse
Affiliation(s)
- José J. Casasnovas-Nieves
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
| | - Yacidzohara Rodríguez
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
| | - Hector L. Franco
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
- Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
| |
Collapse
|
2
|
Oh RY, Chun K, Kowalski PE, Chitayat D. De novo triplication at 1p36.23p36.22 further refines the dosage sensitive region of overlap in Setleis syndrome (focal facial dermal dysplasia type III). Am J Med Genet A 2023; 191:1607-1613. [PMID: 36942595 DOI: 10.1002/ajmg.a.63175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Setleis syndrome (SS), or focal facial dermal dysplasia type III (FFDD3, MIM #227260), is an autosomal recessive condition caused by biallelic loss-of-function variants in TWIST2. It is characterized by bitemporal atrophic skin lesions and distinctive facial features. Individuals with de novo or inherited duplication or triplication of the chromosomal region 1p36.22p36.21 have also been reported to have the SS phenotype with additional neurodevelopmental challenges (rarely seen in individuals with TWIST2 mutations) and variable expressivity and penetrance. Triplication of this region is also associated with more severe manifestations compared to a duplication. We report a 2-year-old female patient with features of SS associated with a de novo 3.603 Mb triplication at 1p36.23p36.22 identified on postnatal microarray analysis. Her triplication shares a 281.263 kb overlap with gains at 1p36.22, reported by previous groups, delineating the shortest region of overlap (SRO) to date. This SRO involves 10 RefSeq and 4 OMIM morbid map genes and highlights the candidate dosage-sensitive element(s) underlying the cardinal features of SS phenotype in individuals with gains at 1p36.
Collapse
Affiliation(s)
- Rachel Youjin Oh
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kathy Chun
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Paul E Kowalski
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Cao Q, Zhang S, Wang J, Wang Y, Pan C, Wang X, Zhao A, Chen X, Qin P, Zhang S, Yao Z, Lv D, Yang Y, Li M. Focal facial dermal dysplasias type III: Two families with Setleis syndrome in China. J Dermatol 2022; 49:1057-1061. [PMID: 35713327 DOI: 10.1111/1346-8138.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Focal facial dermal dysplasias type III (FFDD III), commonly known as Setleis syndrome (SS; Online Mendelian Inheritance in Man #227260), is a type of focal facial dermal dysplasia, characterized by bitemporal atrophic skin lesion. The homozygous mutations in the TWIST2 gene and copy number variants (CNV) at chromosome 1p36.22p36.21 were reported as the pathogenic mechanism. In this study, we collected DNA samples from a large Chinese family affected by FFDD and found no mutation of TWSIT2. To determine the underlying genetic cause, we performed a multipoint parameter linkage analysis and haplotype analysis of the family 1 and mapped SS to a region Chr1:14.074-20.524cM (rs2401090-rs2294642). Copy number variant was identified by Sanger sequencing, which breakpoints were Chr1:11695972 and Chr1:11829858. The region contains eight genes, including FBXO2, FBXO44, FBXO6, MAD2L2, DRAXIN, AK125437, AGTRAP, and C1orf167. There were no candidate gene mutations of the second family with SS. Our study further reduced the size of CNV resulting in SS (Chr1:11696993-11829858) and focused on eight genes.
Collapse
Affiliation(s)
- Qiaoyu Cao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuai Zhang
- Department of Dermatology, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Jianbo Wang
- Department of Dermatology, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyi Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Anqi Zhao
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Chen
- Department of Dermatology, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Pingping Qin
- Department of Dermatology, Yancheng First People's Hospital, Jiangsu Province, China
| | - Shoumin Zhang
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Lv
- Department of Dermatology, Yancheng First People's Hospital, Jiangsu Province, China
| | - Yali Yang
- Dermatology of the Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Crespo NE, Torres-Bracero A, Renta JY, Desnick RJ, Cadilla CL. Expression Profiling Identifies TWIST2 Target Genes in Setleis Syndrome Patient Fibroblast and Lymphoblast Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1997. [PMID: 33669496 PMCID: PMC7922891 DOI: 10.3390/ijerph18041997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Background: Setleis syndrome (SS) is a focal facial dermal dysplasia presenting with bilateral temporal skin lesions, eyelash abnormalities and absent meibomian glands. SS is a rare autosomal recessive disorder caused by mutations in the TWIST2 gene, which codes for a transcription factor of the bHLH family known to be involved in skin and facial development. Methods: We obtained gene expression profiles by microarray analyses from control and SS patient primary skin fibroblast and lymphoblastoid cell lines. Results: Out of 983 differentially regulated genes in fibroblasts (fold change ≥ 2.0), 479 were down-regulated and 509 were up-regulated, while in lymphoblasts, 1248 genes were down-regulated and 73 up-regulated. RT-PCR reactions confirmed altered expression of selected genes. Conclusions: TWIST2 is described as a repressor, but expression profiling suggests an important role in gene activation as well, as evidenced by the number of genes that are down-regulated, with a much higher proportion of down-regulated genes found in lymphoblastoid cells from an SS patient. As expected, both types of cell types showed dysregulation of cytokine genes. These results identify potential TWIST2 target genes in two important cell types relevant to rare disorders caused by mutations in this bHLH gene.
Collapse
Affiliation(s)
- Noe E. Crespo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Alexandra Torres-Bracero
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Jessicca Y. Renta
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| |
Collapse
|
5
|
Kor-anantakul P, Suphapeetiporn K, Jaruratanasirikul S. Ablepharon macrostomia syndrome in a Thai patient: case report and literature review. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ablepharon macrostomia syndrome (AMS) is a rare congenital disorder. To our knowledge, only 20 cases have been reported to date, and all in patients from Western countries. We report a case of AMS in a Thai patient, who presented at age 3 months with severe ectropion of both upper and lower eyelids, alopecia totalis, no palpable clitoris, and hypoplasia of both labia minora and labia majora. Trio whole exome sequencing analysis was performed, which revealed a heterozygous missense c.223G>A (p.Glu75Lys) variation in TWIST2. To our knowledge, this is the first reported case of AMS in a patient from Thailand and the first reported case of AMS in Asia.
Collapse
Affiliation(s)
- Phawin Kor-anantakul
- Department of Pediatrics, Faculty of Medicine , Prince of Songkla University , Hat Yai , Songkhla , Thailand
| | - Kanya Suphapeetiporn
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics , Chulalongkorn University , Bangkok , Thailand
- Excellence Center for Genomics and Precision Medicine , King Chulalongkorn Memorial Hospital , Thai Red Cross Society , Bangkok , Thailand
| | - Somchit Jaruratanasirikul
- Department of Pediatrics, Faculty of Medicine , Prince of Songkla University , Hat Yai , Songkhla , Thailand
| |
Collapse
|
6
|
Focal facial dermal dysplasia type 4: identification of novel CYP26C1 mutations in unrelated patients. J Hum Genet 2017; 63:257-261. [PMID: 29263414 DOI: 10.1038/s10038-017-0375-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Abstract
The focal facial dermal dysplasias (FFDDs) are a group of rare inherited developmental disorders characterized by congenital scar-like atrophic lesions in the bitemporal (FFDD1, 2, and 3) or preauricular (FFDD4) areas. FFDD4 is an autosomal-recessive trait characterized by preauricular skin defects without additional dysmorphic findings. Previously, only two CYP26C1 mutations in four unrelated patients with FFDD4 were reported. Here, we report two additional unrelated FFDD4 patients with four CYP26C1 mutations including three novel lesions: a missense mutation, c.230G>C (p.Arg77Pro), and two splice-site mutations, c.1191+1G>T (IVS5(+1)G>T) and c.1191+2insT (IVS5(+2)insT). In silico analyses predicted all three mutations as pathogenic. Compound heterozygosity was validated through parental studies. These results provide further evidence that CYP26C1 mutations are the molecular genetic basis of FFDD4. Identification of additional cases by dermatologists, pediatricians, and medical geneticists will lead to further understanding of the clinical spectrum of FFDD4 and define its molecular genetic heterogeneity.
Collapse
|
7
|
Lee BH, Aggarwal A, Slavotinek A, Edelmann L, Chen B, Desnick RJ. The focal facial dermal dysplasias: phenotypic spectrum and molecular genetic heterogeneity. J Med Genet 2017; 54:585-590. [PMID: 28663233 DOI: 10.1136/jmedgenet-2017-104561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 11/03/2022]
Abstract
Focal facial dermal dysplasias (FFDDs) are rare genetic/developmental disorders characterised by bilateral 'scar-like' facial lesions. Four subtypes are classified by the bitemporal (FFDD1-3) or preauricular (FFDD4) lesion location. FFDD1-3 are differentiated by additional facial abnormalities and inheritance patterns. Although the genetic defects causing FFDD1 and FFDD2 remain unknown, recent studies identified defects causing FFDD3 and FFDD4. Here, the clinical phenotypes, genetic defects and inheritance of the four FFDD subtypes are described. In addition, the overlapping facial abnormalities in FFDD3 and two other genetic disorders, Ablepharon macrostomia syndrome and Barber-Say syndrome, are noted. Familiarity with the FFDDs by clinicians will further delineate the phenotypes and genetic/developmental defects of these dermal facial disorders.
Collapse
Affiliation(s)
- Beom Hee Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Aneel Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anne Slavotinek
- Department of Pediatrics, UCSF School of Medicine, San Francisco, USA
| | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
8
|
|
9
|
De Maria B, Mazzanti L, Roche N, Hennekam RC. Barber-Say syndrome and Ablepharon-Macrostomia syndrome: An overview. Am J Med Genet A 2016; 170:1989-2001. [DOI: 10.1002/ajmg.a.37757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Beatrice De Maria
- Department of Pediatrics and Translational Genetics; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Department of Pediatrics; S. Orsola-Malpighi Hospital; Bologna Italy
| | - Laura Mazzanti
- Department of Pediatrics; S. Orsola-Malpighi Hospital; Bologna Italy
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery; University Hospital; Ghent Belgium
| | - Raoul C. Hennekam
- Department of Pediatrics and Translational Genetics; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
10
|
Abstract
DNA microarray is a powerful, non-biased discovery technology that allows the analysis of the expression of thousands of genes at a time. The technology can be used for the identification of differential gene expression, genetic mutations associated with diseases, DNA methylation, single-nucleotide polymorphisms, and microRNA expression, to name a few. This chapter describes microarray technology for the analysis of differential gene expression in response to estrogen treatment.
Collapse
|
11
|
Lee BH, Kasparis C, Chen B, Mei H, Edelmann L, Moss C, Weaver DD, Desnick RJ. Setleis syndrome due to inheritance of the 1p36.22p36.21 duplication: evidence for lack of penetrance. J Hum Genet 2015; 60:717-22. [DOI: 10.1038/jhg.2015.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022]
|
12
|
Abstract
Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes.
Collapse
Affiliation(s)
- Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|